Patents Assigned to Nanometrics Incorporated
-
Patent number: 9110127Abstract: The present disclosure provides methods and apparatus that enable characterization of an electrical property of a semiconductor specimen, e.g., dopant concentration of a near-surface region of the specimen. In exemplary method, a target depth for measurement is selected. This thickness may, for example, correspond to a nominal production thickness of a thin active device region of the specimen. A light is adjusted to an intensity selected to characterize a target region of the specimen having a thickness no greater than the target depth and a surface of the specimen is illuminated with the light. An AC voltage signal induced in the specimen by the light is measured and this AC voltage may be used to quantify an aspect of the electrical property, e.g., to determine dopant concentration, of the target region.Type: GrantFiled: July 3, 2012Date of Patent: August 18, 2015Assignee: Nanometrics IncorporatedInventor: Emil Kamieniecki
-
Publication number: 20150168290Abstract: An optical metrology device, such as an ellipsometer, includes a focusing system that adjusts the focal position of the metrology device in real time so that focus may be maintained during movement of the measurement locations on the sample, e.g., using closed loop control. A filtered focus signal may be used to adjust the focal position while moving to a measurement location. Additionally, the focus signal may be coarsely filtered and finely filtered, where a coarse filtered focus signal is used to adjust the focal position while moving to a measurement location and a fine filtered focus signal is used to adjust the focal position when at the measurement location. An open loop control may be used in which once at the measurement location, a filtered focus signal is used to adjust the focal position when the filtered focus signal has no offset with respect to the focus signal.Type: ApplicationFiled: December 17, 2013Publication date: June 18, 2015Applicant: Nanometrics IncorporatedInventor: Amit Shachaf
-
Publication number: 20150153165Abstract: An optical metrology device simultaneously detects light with multiple angles of incidence (AOI) and/or multiple azimuth angles to determine at least one parameter of a sample. The metrology device focuses light on the sample using an optical system with a large numerical aperture, e.g., 0.2 to 0.9. Multiple channels having multiple AOIs and/or multiple azimuth angles are selected simultaneously by passing light reflected from the sample through a plurality of pupils in a pupil plate. Beamlets produced by the plurality of pupils are detected, e.g., with one or more spectrophotometers, to produce data for the multiple AOIs and/or multiple azimuth angles. The data for multiple AOI and/or multiple azimuth angles may then be processed to determine at least one parameter of the sample, such as profile parameters or overlay error.Type: ApplicationFiled: December 4, 2013Publication date: June 4, 2015Applicant: Nanometrics IncorporatedInventors: Zhuan Liu, Shifang Li
-
Publication number: 20150146193Abstract: An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.Type: ApplicationFiled: November 26, 2013Publication date: May 28, 2015Applicant: Nanometrics IncorporatedInventor: Andrzej Buczkowski
-
Patent number: 9007584Abstract: A plurality of overlay errors in a structure is determined using a target that includes a plurality of diffraction based overlay pads. Each diffraction based overlay pad has the same number of periodic patterns as the structure under test. Additionally, each diffraction based overlay pad includes a programmed shift between each pair of periodic patterns. The pads are illuminated and the resulting light is detected and used to simultaneously determine the plurality of overlay errors in the structure based on the programmed shifts. The overlay errors may be determined using a subset of elements of the Mueller matrix or by using the resulting spectra from the pads.Type: GrantFiled: December 27, 2010Date of Patent: April 14, 2015Assignee: Nanometrics IncorporatedInventor: Jie Li
-
Patent number: 8825444Abstract: A metrology unit includes an integrated reference target with which an automated system check process is performed. The automated system check process includes measuring a feature on the reference target and determining if the measurement is within a desired specification for the metrology unit. When the metrology unit fails the automated system check, or if otherwise warranted, an automated diagnosis process may be performed using the same integrated reference target. The automated system check and automated diagnosis may be optimized based on correlations between parameters of the automated qualification and parameters of the automated diagnosis. Similarly, the measurement of a processed wafer may be optimized based on a correlation between parameters of the metrology of the processed wafer and parameters of the automated system check.Type: GrantFiled: September 8, 2009Date of Patent: September 2, 2014Assignee: Nanometrics IncorporatedInventors: Pablo I. Rovira, Jaime Poris, Jonathan M. Madsen, Scott D. Penner
-
Patent number: 8817273Abstract: A dark field diffraction based overlay metrology device illuminates an overlay target that has at least three pads for an axis, the three pads having different programmed offsets. The overlay target may be illuminated using two obliquely incident beams of light from opposite azimuth angles or using normally incident light. Two dark field images of the overlay target are collected using ±1st diffraction orders to produce at least six independent signals. For example, the +1st diffraction order may be collected from one obliquely incident beam of light and the ?1st diffraction order may be collected from the other obliquely incident beam of light. Alternatively, the ±1st diffraction orders may be separately detected from the normally incident light to produce the two dark field images of the overlay target. The six independent signals from the overlay target are used to determine an overlay error for the sample along the axis.Type: GrantFiled: April 24, 2012Date of Patent: August 26, 2014Assignee: Nanometrics IncorporatedInventors: Hwan J. Jeong, Silvio J. Rabello, Thomas Andre Casavant
-
Patent number: 8818754Abstract: The properties of a surface of an object in presence of thin transparent films are determined by generating a library of model signals and processing a measurement signal via searching the library to evaluate films properties and topography. The library may be reduced with principal component analysis to enhance computation speed. Computation enhancement may also be achieved by removal of the height contributions from the signal leaving only the film contribution in the signal. The film measurement signal is compared to a library of film signals to determine the film parameters of the sample. The library of film signals is produced by processing each full signal in a library to similarly remove the height contributions leaving only the film contributions. Additionally, a post-analysis process may be applied to properly evaluate local topography.Type: GrantFiled: May 20, 2011Date of Patent: August 26, 2014Assignee: Nanometrics IncorporatedInventors: Boris V. Kamenev, Michael J. Darwin
-
Publication number: 20140098369Abstract: An ellipsometer includes an integrated focusing system with a beam splitter between the sample and the ellipsometer detector. The beam splitter provides a portion of the radiation to a lens system that magnifies any deviation from a best focus position by at least 2×. The focusing system includes a 2D sensor, where the spot of light focused on the sensor is 50 percent or smaller than the sensor. The focusing system may further include a compensator to correct optical aberrations caused by the beam splitter. A processor receives an image signal and finds the location of the spot from which focus error can be determined and used to correct the focal position of the ellipsometer. The processor compensates for movement of the spot caused by rotating optics. Additionally, a proportional-integral-derivative controller may be used to control exposure time and/or gain of the camera.Type: ApplicationFiled: October 4, 2013Publication date: April 10, 2014Applicant: Nanometrics IncorporatedInventors: Barry J. Blasenheim, Amit Shachaf
-
Publication number: 20130278942Abstract: A dark field diffraction based overlay metrology device illuminates an overlay target that has at least three pads for an axis, the three pads having different programmed offsets. The overlay target may be illuminated using two obliquely incident beams of light from opposite azimuth angles or using normally incident light. Two dark field images of the overlay target are collected using ±1st diffraction orders to produce at least six independent signals. For example, the +1st diffraction order may be collected from one obliquely incident beam of light and the ?1st diffraction order may be collected from the other obliquely incident beam of light. Alternatively, the ±1st diffraction orders may be separately detected from the normally incident light to produce the two dark field images of the overlay target. The six independent signals from the overlay target are used to determine an overlay error for the sample along the axis.Type: ApplicationFiled: April 24, 2012Publication date: October 24, 2013Applicant: Nanometrics IncorporatedInventors: Hwan J. Jeong, Silvio J. Rabello, Thomas Andre Casavant
-
Patent number: 8559008Abstract: An ellipsometer includes an integrated focusing system with a beam splitter between the sample and the ellipsometer detector. The beam splitter provides a portion of the radiation to a lens system that magnifies any deviation from a best focus position by at least 2×. The focusing system includes a 2D sensor, where the spot of light focused on the sensor is 50 percent or smaller than the sensor. The focusing system may further include a compensator to correct optical aberrations caused by the beam splitter. A processor receives an image signal and finds the location of the spot from which focus error can be determined and used to correct the focal position of the ellipsometer. The processor compensates for movement of the spot caused by rotating optics. Additionally, a proportional-integral-derivative controller may be used to control exposure time and/or gain of the camera.Type: GrantFiled: April 7, 2011Date of Patent: October 15, 2013Assignee: Nanometrics IncorporatedInventors: Barry J. Blasenheim, Amit Shachaf
-
Publication number: 20130257270Abstract: A plasma lamp includes a capsule with a gas contained within the capsule and an ignition source to ionize the gas to produce a light emitting plasma. The ignition source includes field defining conductors within the capsule and a radio frequency source external to the capsule. The radio frequency source and the field defining conductors are configured so that the field defining conductors will produce electric fields in response to RF energy from the radio frequency source and the electric field ionizes at least a portion of the gas.Type: ApplicationFiled: March 15, 2013Publication date: October 3, 2013Applicant: Nanometrics IncorporatedInventor: Ronald A. Rojeski
-
Publication number: 20130242303Abstract: A dual optical metrology system includes a first metrology device and a second metrology device, each producing light at different oblique angles of incidence on the same spot of a sample from different azimuth angles. The dual optical metrology system further includes a rotating stage or flip mirrors capable of altering the orientation of the light beams so the first and second metrology devices can measure the same spot on the sample at different orientations. Thus, the first and second metrology devices generate first and second sets of optical metrology data, respectively, at a first orientation with respect to the sample. After the sample is rotated, the first and second metrology devices generate third and fourth sets of optical metrology data. The first, second, third, and fourth sets of data can then be used to determine one or more parameters of the sample.Type: ApplicationFiled: March 13, 2012Publication date: September 19, 2013Applicant: Nanometrics IncorporatedInventor: Zhuan Liu
-
Patent number: 8534135Abstract: An optical metrology device determines the local stress in a film on a substrate. The metrology device maps the thickness of the substrate prior to processing. After processing, the metrology device determines the surface curvature of the substrate caused by the processing and maps the thickness of a film on the top surface after of the substrate after processing. The surface curvature of the substrate may be determined as basis functions. The local stress in the film is then determined using the mapped thickness of the substrate, the determined surface curvature, and the mapped thickness of the film. The local stress may be determined using Stoney's equation that is corrected for non-uniform substrate curvature, non-uniform film thickness, and non-uniform substrate thickness.Type: GrantFiled: April 25, 2011Date of Patent: September 17, 2013Assignee: Nanometrics IncorporatedInventors: Timothy A Johnson, Michael J Darwin
-
Patent number: 8525993Abstract: Asymmetry metrology is performed using at least a portion of Mueller matrix elements, including, e.g., the off-diagonal elements of the Mueller matrix. The Mueller matrix may be generated using, e.g., a spectroscopic or angle resolved ellipsometer that may include a rotating compensator. The Mueller matrix is analyzed by fitting at least a portion of the elements to Mueller matrix elements calculated using a rigorous electromagnetic model of the sample or by fitting the off-diagonal elements to a calibrated linear response. The use of the Mueller matrix elements in the asymmetry measurement permits, e.g., overlay analysis using in-chip devices thereby avoiding the need for special off-chip targets.Type: GrantFiled: January 29, 2010Date of Patent: September 3, 2013Assignee: Nanometrics IncorporatedInventors: Silvio J. Rabello, William A. McGahan, Jie Li, Yongdong Liu
-
Publication number: 20130208279Abstract: An image based overlay measurement is performed using an overlay target that includes shifted overlying gratings. The overlay target is imaged and an asymmetry is measured in the image of the overlaid gratings. The asymmetry is used to determine the overlay error. For each measurement direction, the overlay target may include two or more overlay measurement pads with different offsets between the top and bottom gratings. The measured asymmetries and offsets in the overlay measurement pads may be used to determine the overlay error, e.g., using self-calibration. The pitch and critical dimensions of the overlay target may be optimized to produce a greatest change of symmetry with overlay error for a numerical aperture and wavelength of light used by the image based metrology device.Type: ApplicationFiled: February 13, 2013Publication date: August 15, 2013Applicant: Nanometrics IncorporatedInventor: Nanometrics Incorporated
-
Patent number: 8501501Abstract: A sample with at least a first structure and a second structure is measured and a first model and a second model of the sample are generated. The first model models the first structure as an independent variable and models the second structure. The second model of the sample models the second structure as an independent variable. The measurement, the first model and the second model together to determine at least one desired parameter of the sample. For example, the first structure may be on a first layer and the second structure may be on a second layer that is under the first layer, and the processing of the sample may at least partially remove the first layer, wherein the second model models the first layer as having a thickness of zero.Type: GrantFiled: July 26, 2012Date of Patent: August 6, 2013Assignee: Nanometrics IncorporatedInventors: Ye Feng, Zhuan Liu
-
Patent number: 8462345Abstract: A structure that is located adjacent to a measurement target on a substrate is used to convert incident radiation from an optical metrology device to be in-plane with the measurement target. The structure may be, e.g., a grating or photonic crystal, and may include a waveguide between the structure and the measurement target. The in-plane light interacts with the measurement target and is reflected back to the structure, which converts the in-plane light to out-of-plane light that is received by the optical metrology device. The optical metrology device then uses the information from the received light to determine one or more desired parameters of the measurement target. Additional structures may be used to receive light that is transmitted through or scattered by the measurement target if desired.Type: GrantFiled: October 27, 2011Date of Patent: June 11, 2013Assignee: Nanometrics IncorporatedInventor: Ye Feng
-
Patent number: 8427645Abstract: An optical metrology device produces a broadband beam of light that is incident on and reflected by a sample and introduces multiple variations in the polarization state of the beam of light induced by an optical chiral element. Using the detected light, the Muller matrix or partial Mueller matrix for the sample is determined, which is then used to determine a characteristic of the sample. For example, simulated spectra for a Mueller matrix for a model is fit to the measured spectra for the Mueller matrix of the sample by adjusting the parameters of the model until an acceptable fit between the simulated spectra and measured spectra from the Mueller matrices is produced. The varied parameters are then used as the sample parameters of interested, which can be reported, such as by storing in memory or displaying.Type: GrantFiled: January 10, 2011Date of Patent: April 23, 2013Assignee: Nanometrics IncorporatedInventors: Pedro Vagos, Pablo I. Rovira
-
Patent number: 8379227Abstract: One or more parameters of a sample that includes a textured substrate and one or more overlying films is determined using, e.g., an optical metrology device to direct light to be incident on the sample and detecting light after the incident light interacts with the sample. The acquired data is normalized using reference data that is produced using a textured reference sample. The normalized data is then fit to simulated data that is associated with a model having an untextured substrate and one or more variable parameters. The value(s) of the one or more variable parameters from the model associated with the simulated data having the best fit is reported as measurement result.Type: GrantFiled: October 28, 2009Date of Patent: February 19, 2013Assignee: Nanometrics IncorporatedInventor: Ira Naot