Abstract: Embodiments of the present invention are provided for improved contact doping and annealing systems and processes. In embodiments, a plasma ion immersion implantation (PIII) process is used for contact doping of nanowires and other nanoelement based thin film devices. According to further embodiments of the present invention, pulsed laser annealing using laser energy at relatively low laser fluences below about 100 mJ/cm2 (e.g., less than about 50 mJ/cm2, e.g., between about 2 and 18 mJ/cm2) is used to anneal nanowire and other nanoelement-based devices on substrates, such as low temperature flexible substrates, e.g., plastic substrates.
Abstract: A nanowire varactor diode and methods of making the same are disclosed. The structure comprises a coaxial capacitor running the length of the semiconductor nanowire. In one embodiment, a semiconductor nanowire of a first conductivity type is deposited on a substrate. An insulator is formed on at least a portion of the nanowire's surface. A region of the nanowire is doped with a second conductivity type material. A first electrical contact is formed on at least part of the insulator and the doped region. A second electrical contact is formed on a non-doped potion of the nanowire. During operation, the conductivity type at the surface of the nanowire inverts and a depletion region is formed upon application of a voltage to the first and second electrical contacts. The varactor diode thereby exhibits variable capacitance as a function of the applied voltage.
Type:
Grant
Filed:
March 23, 2004
Date of Patent:
October 3, 2006
Assignee:
Nanosys, Inc.
Inventors:
David Stumbo, Jian Chen, David Heald, Yaoling Pan
Abstract: This invention provides novel capacitors comprising nanofiber enhanced surface area substrates and structures comprising such capacitors, as well as methods and uses for such capacitors.
Abstract: The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed.
Type:
Application
Filed:
September 22, 2005
Publication date:
September 28, 2006
Applicant:
Nanosys, Inc.
Inventors:
Yaoling Pan, Francisco Leon, David Stumbo
Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
Type:
Application
Filed:
April 18, 2006
Publication date:
September 21, 2006
Applicant:
Nanosys, Inc.
Inventors:
Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.
Type:
Application
Filed:
January 12, 2006
Publication date:
September 14, 2006
Applicant:
Nanosys, Inc.
Inventors:
Robert Dubrow, Lawrence Bock, R. Daniels, Veeral Hardev, Chunming Niu, Vijendra Sahi
Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
Type:
Grant
Filed:
April 29, 2005
Date of Patent:
September 12, 2006
Assignee:
Nanosys, Inc.
Inventors:
Yaoling Pan, Xiangfeng Duan, Robert S. Dubrow, Jay L. Goldman, Shahriar Mostarshed, Chunming Niu, Linda T. Romano, Dave Stumbo
Abstract: The present invention is directed to a display using nanowire transistors. In particular, a liquid crystal display using nanowire pixel transistors, nanowire row transistors, nanowire column transistors and nanowire edge electronics is described. A nanowire pixel transistor is used to control the voltage applied across a pixel containing liquid crystals. A pair of nanowire row transistors is used to turn nanowire pixel transistors that are located along a row trace connected to the pair of nanowire row transistors on and off. Nanowire column transistors are used to apply a voltage across nanowire pixel transistors that are located along a column trace connected to a nanowire column transistor. Displays including organic light emitting diodes (OLED) displays, nanotube field effect displays, plasma displays, micromirror displays, micoelectromechanical (MEMs) displays, electrochromic displays and electrophoretic displays using nanowire transistors are also provided.
Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
Type:
Application
Filed:
December 6, 2005
Publication date:
August 24, 2006
Applicant:
Nanosys, Inc.
Inventors:
Chunming Niu, Calvin Chow, Stephen Empedocles, J. Parce
Abstract: The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into an electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.
Type:
Grant
Filed:
August 4, 2004
Date of Patent:
August 15, 2006
Assignee:
Nanosys, Inc.
Inventors:
Mihai Buretea, Jian Chen, Calvin Chow, Chunming Niu, Yaoling Pan, J. Wallace Parce, Linda T. Romano, David Stumbo
Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
Type:
Grant
Filed:
December 9, 2004
Date of Patent:
August 8, 2006
Assignee:
Nanosys, Inc.
Inventors:
Erik C. Scher, Mihai Buretea, Stephen A. Empedocles
Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
Type:
Grant
Filed:
December 9, 2004
Date of Patent:
August 8, 2006
Assignee:
Nanosys, Inc.
Inventors:
Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
Abstract: Macroelectronic substrate materials incorporating nanowires are described. These are used to provide underlying electronic elements (e.g., transistors and the like) for a variety of different applications. Methods for making the macroelectronic substrate materials are disclosed. One application is for transmission an reception of RF signals in small, lightweight sensors. Such sensors can be configured in a distributed sensor network to provide security monitoring. Furthermore, a method and apparatus for a radio frequency identification (RFID) tag is described. The RFID tag includes an antenna and a beam-steering array. The beam-steering array includes a plurality of tunable elements. A method and apparatus for an acoustic cancellation device and for an adjustable phase shifter that are enabled by nanowires are also described.
Type:
Application
Filed:
September 14, 2005
Publication date:
August 3, 2006
Applicant:
Nanosys, Inc.
Inventors:
Stephen Empedocles, David Stumbo, Chunming Niu, Xiangfeng Duan
Abstract: Macroelectronic substrate materials incorporating nanowires are described. These are used to provide underlying electronic elements (e.g., transistors and the like) for a variety of different applications. Methods for making the macroelectronic substrate materials are disclosed. One application is for transmission an reception of RF signals in small, lightweight sensors. Such sensors can be configured in a distributed sensor network to provide security monitoring. Furthermore, a method and apparatus for a radio frequency identification (RFID) tag is described. The RFID tag includes an antenna and a beam-steering array. The beam-steering array includes a plurality of tunable elements. A method and apparatus for an acoustic cancellation device and for an adjustable phase shifter that are enabled by nanowires are also described.
Type:
Grant
Filed:
September 14, 2005
Date of Patent:
August 1, 2006
Assignee:
Nanosys, Inc.
Inventors:
Stephen A. Empedocles, David P. Stumbo, Chunming Niu, Xiangfeng Duan
Abstract: This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or material.
Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
Type:
Application
Filed:
May 5, 2004
Publication date:
July 20, 2006
Applicant:
NANOSYS, Inc.
Inventors:
Robert Dubrow, Robert Daniels, J. Parce, Matthew Murphy, Jim Hamilton, Erik Scher, Dave Stumbo, Chunming Niu, Linda Romano, Jay Goldman, Vijendra Sahi, Jeffery Whiteford
Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
Type:
Application
Filed:
January 30, 2006
Publication date:
July 13, 2006
Applicant:
Nanosys, Inc.
Inventors:
Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
Abstract: This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or materials.
Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
Type:
Grant
Filed:
September 4, 2003
Date of Patent:
June 27, 2006
Assignee:
Nanosys, Inc.
Inventors:
Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
Type:
Grant
Filed:
September 25, 2003
Date of Patent:
June 27, 2006
Assignee:
Nanosys, Inc.
Inventors:
Robert Dubrow, Linda T. Romano, David Stumbo