Patents Assigned to Nanosys, Inc.
  • Patent number: 7422980
    Abstract: Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: September 9, 2008
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, R. Hugh Daniels, Chunming Niu, Vijendra Sahi, James M. Hamilton, Linda T. Romano
  • Publication number: 20080200028
    Abstract: Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.
    Type: Application
    Filed: November 21, 2006
    Publication date: August 21, 2008
    Applicant: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Hugh Daniels, Chunming Niu, Vijendra Sahi, James Hamilton, Linda T. Romano
  • Publication number: 20080150165
    Abstract: Methods, systems, and apparatuses for annealing semiconductor nanowires and for fabricating electrical devices are provided. Nanowires are deposited on a substrate. A plurality of electrodes is formed. The nanowires are in electrical contact with the plurality of electrodes. The nanowires are doped. A polarized laser beam is applied to the nanowires to anneal at least a portion of the nanowires. The nanowires may be aligned substantially parallel to an axis. The laser beam may be polarized in various ways to modify absorption of radiation of the applied laser beam by the nanowires. For example, the laser beam may be polarized in a direction substantially parallel to the axis or substantially perpendicular to the axis to enable different nanowire absorption profiles.
    Type: Application
    Filed: November 7, 2007
    Publication date: June 26, 2008
    Applicant: NANOSYS, INC.
    Inventors: David P. Stumbo, Yaoling Pan, Costas P. Grigoropoulos, Nipun Misra
  • Publication number: 20080150009
    Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide (Al2O3), hafnium oxide (HfO2), and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multistate (e.g., two, three or four bit) operation.
    Type: Application
    Filed: May 1, 2007
    Publication date: June 26, 2008
    Applicant: NANOSYS, INC.
    Inventor: Jian Chen
  • Publication number: 20080150004
    Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide (Al2O3), hafnium oxide (HfO2), and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multistate (e.g., two, three or four bit) operation.
    Type: Application
    Filed: March 19, 2007
    Publication date: June 26, 2008
    Applicant: NANOSYS, INC.
    Inventors: Jian Chen, Xiangfeng Duan, Karen Cruden, Chao Liu, Madhuri L. Nallabolu, Srikanth Ranganathan, Francisco Leon, J. Wallace Parce
  • Patent number: 7391018
    Abstract: The present invention generally discloses the use of a nanostructured non-silicon thin film (such as an alumina or aluminum thin film) on a supporting substrate which is subsequently coated with an active layer of a material such as silicon or tungsten. The base, underlying non-silicon material generates enhanced surface area while the active layer assists in incorporating and transferring energy to one or more analytes adsorbed on the active layer when irradiated with a laser during laser desorption of the analyte(s). The present invention provides substrate surfaces that can be produced by relatively straightforward and inexpensive manufacturing processes and which can be used for a variety of applications such as mass spectrometry, hydrophobic or hydrophilic coatings, medical device applications, electronics, catalysis, protection, data storage, optics, and sensors.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 24, 2008
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Robert Hugh Daniels, Robert S. Dubrow, Jay L. Goldman
  • Publication number: 20080128688
    Abstract: The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 5, 2008
    Applicant: NANOSYS, INC.
    Inventors: Yaoling Pan, Francisco Leon, David P. Stumbo
  • Patent number: 7382017
    Abstract: Methods and apparatuses for nanoenabled memory devices and anisotropic charge carrying arrays are described. In an aspect, a memory device includes a substrate, a source region of the substrate, and a drain region of the substrate. A population of nanoelements is deposited on the substrate above a channel region, the population of nanolements in one embodiment including metal quantum dots. A tunnel dielectric layer is formed on the substrate overlying the channel region, and a metal migration barrier layer is deposited over the dielectric layer. A gate contact is formed over the thin film of nanoelements. The nanoelements allow for reduced lateral charge transfer. The memory device may be a single or multistate memory device.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: June 3, 2008
    Assignee: Nanosys, Inc
    Inventors: Xiangfeng Duan, Calvin Y. H. Cho, David L. Heald, Chunming Niu, J. Wallace Parce, David P. Stumbo
  • Publication number: 20080118755
    Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure, for reversibly modifying nanostructures, and for manipulating the electronic properties of nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures. Ligands of the present invention are also useful for manipulating the electronic properties of nanostructure compositions (e.g., by modulating energy levels, creating internal bias fields, reducing charge transfer or leakage, etc.).
    Type: Application
    Filed: December 9, 2005
    Publication date: May 22, 2008
    Applicant: NANOSYS, Inc.
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, Jian Chen, William P. Freeman, Andreas Meisel, Linh Nguyen, J. Wallace Parce, Erik Scher
  • Patent number: 7374807
    Abstract: The present invention provides matrixes doped with semiconductor nanocrystals. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. The present invention also provides processes for producing matrixes comprising semiconductor nanocrystals.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 20, 2008
    Assignee: Nanosys, Inc.
    Inventors: J. Wallace Parce, Jian Chen, Bob Dubrow, Bill Freeman, Erik C. Scher, Jeffery A. Whiteford
  • Publication number: 20080105855
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Application
    Filed: April 3, 2007
    Publication date: May 8, 2008
    Applicant: NANOSYS, INC.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 7365395
    Abstract: Artificial dielectrics using nanostructures, such as nanowires, are disclosed. In embodiments, artificial dielectrics using other nanostructures, such as nanorods, nanotubes or nanoribbons and the like are disclosed. The artificial dielectric includes a dielectric material with a plurality of nanowires (or other nanostructures) embedded within the dielectric material. Very high dielectric constants can be achieved with an artificial dielectric using nanostructures. The dielectric constant can be adjusted by varying the length, diameter, carrier density, shape, aspect ratio, orientation and density of the nanostructures. Additionally, a controllable artificial dielectric using nanostructures, such as nanowires, is disclosed in which the dielectric constant can be dynamically adjusted by applying an electric field to the controllable artificial dielectric. A wide range of electronic devices can use artificial dielectrics with nanostructures to improve performance.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: April 29, 2008
    Assignee: Nanosys, Inc.
    Inventors: David P. Stumbo, Stephen A. Empedocles, Francisco Leon, J. Wallace Parce
  • Publication number: 20080073505
    Abstract: The present invention generally discloses the use of a nanostructured non-silicon thin film (such as an alumina or aluminum thin film) on a supporting substrate which is subsequently coated with an active layer of a material such as silicon or tungsten. The base, underlying non-silicon material generates enhanced surface area while the active layer assists in incorporating and transferring energy to one or more analytes adsorbed on the active layer when irradiated with a laser during laser desorption of the analyte(s). The present invention provides substrate surfaces that can be produced by relatively straightforward and inexpensive manufacturing processes and which can be used for a variety of applications such as mass spectrometry, hydrophobic or hydrophilic coatings, medical device applications, electronics, catalysis, protection, data storage, optics, and sensors.
    Type: Application
    Filed: September 14, 2005
    Publication date: March 27, 2008
    Applicant: Nanosys, Inc.
    Inventors: Chunming Niu, Robert Hugh Daniels, Robert S. Dubrow, Jay L. Goldman
  • Publication number: 20080072818
    Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrificial growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
    Type: Application
    Filed: August 15, 2007
    Publication date: March 27, 2008
    Applicant: NANOSYS, INC.
    Inventors: Shahriar Mostarshed, Linda Romano
  • Patent number: 7344961
    Abstract: The present invention is directed to methods to produce, process, and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides a method for producing nanowires that includes providing a thin film of a catalyst material with varying thickness on a substrate, heating the substrate and thin film, such that the thin film disassociates at the relatively thinner regions and vapor depositing a semiconductor onto the substrate to produce nanowires. A method is also provided in which two or more thin films of different materials are overlayed over a substrate, selectively etching the first underlying thin film to create a plurality of islands of the second thin film that mask portions of the first thin film and expose other portions and growing nanowires on the first thin film. Additional methods for producing nanowires are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 18, 2008
    Assignee: Nanosys, Inc.
    Inventors: Linda T. Romano, James M. Hamilton
  • Patent number: 7344617
    Abstract: This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or material.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: March 18, 2008
    Assignee: Nanosys, Inc.
    Inventor: Robert Dubrow
  • Patent number: 7345307
    Abstract: The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: March 18, 2008
    Assignee: Nanosys, Inc.
    Inventors: Yaoling Pan, Francisco Leon, David P. Stumbo
  • Patent number: 7339184
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 4, 2008
    Assignee: Nanosys, Inc
    Inventors: Linda T. Romano, Jian Chen, Xiangfeng Duan, Robert S. Dubrow, Stephen A. Empedocles, Jay L. Goldman, James M. Hamilton, David L. Heald, Francesco Lemmi, Chunming Niu, Yaoling Pan, George Pontis, Vijendra Sahi, Erik C. Scher, David P. Stumbo, Jeffery A. Whiteford
  • Publication number: 20080041814
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Application
    Filed: August 16, 2007
    Publication date: February 21, 2008
    Applicant: NANOSYS, INC.
    Inventors: Linda Romano, Jian Chen, Xiangfeng Duan, Robert Dubrow, Stephen Empedocles, Jay Goldman, James Hamilton, David Heald, Francesco Lemmi, Chunming Niu, Yaoling Pan, George Pontis, Vijendra Sahi, Erik Scher, David Stumbo, Jeffery Whiteford
  • Publication number: 20080044911
    Abstract: Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 21, 2008
    Applicant: NANOSYS, INC.
    Inventors: Larry Bock, R. Daniels, Stephen Empedocles, John Owicki