Patents Assigned to Nanotek Instruments, Inc.
  • Publication number: 20190143369
    Abstract: Provided is a process for producing a surface-metalized polymer article, comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conductive filler dispersed in a first liquid medium, which is an adhesive monomer or contains a liquid adhesive monomer, oligomer or polymer dissolved in a solvent; (b) bringing a polymer article into a graphene deposition zone, wherein the graphene dispersion is sprayed, painted, coated, cast, or printed to deposit graphene sheets and optional conductive filler to a surface of the polymer article; and (c) moving the graphene-coated polymer article into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated polymer article to obtain a surface-metalized polymer article and retreating the surface-metalized polymer article from the metallization chamber.
    Type: Application
    Filed: April 2, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190143367
    Abstract: A continuous process for producing a surface-metalized polymer article, comprising: (a) continuously immersing a polymer article into a graphene dispersion comprising multiple graphene sheets dispersed in a liquid medium for a period of immersion time and then retreating the polymer article from the dispersion, enabling deposition of graphene sheets onto a surface of the polymer article to form a graphene-attached polymer article; (b) continuously moving the graphene-attached polymer article into a drying or heating zone to enable bonding of graphene sheets to said surface to form a graphene-covered polymer article; and (c) continuously moving the graphene-covered polymer article into a metallization zone where a layer of a metal is chemically, physically, electrochemically or electrolytically deposited onto a surface of the graphene-covered polymer article to form the surface-metalized polymer article. Step (a) may be preceded by a surface treatment of the polymer article.
    Type: Application
    Filed: March 7, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190145007
    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of multiple functionalized graphene sheets having a first chemical functional group, multiple functionalized carbon nanotubes having a second chemical group functional group, or a combination of both, which are coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple functionalized graphene sheets contain single-layer or few-layer graphene sheets and/or the multiple functionalized carbon nanotubes contain single-walled or multiwalled carbon nanotubes, and wherein the multiple functionalized graphene sheets or functionalized carbon nanotubes are bonded to the polymer component surface with or without an adhesive resin.
    Type: Application
    Filed: March 15, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190144621
    Abstract: Provided is a surface-metalized polymer article, comprising a polymer component, a first layer of multiple graphene sheets coated on a surface of the polymer component, and a second layer of a plated metal chemically, electrochemically or electrolytically deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 25% by weight of non-carbon elements wherein the non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof and wherein multiple graphene sheets are bonded to the polymer component surface with or without an adhesive resin and the first layer has a thickness from 0.34 nm to 30 ?m.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z Jang
  • Patent number: 10283280
    Abstract: Provided is a process for producing a rope-shaped supercapacitor comprising: (a) impregnating a first mixture of a first electrode active material (e.g. activated carbon or isolated graphene sheets) and a first electrolyte into pores of a first porous rod to form a first electrode; (b) encasing a porous separator around the first electrode to form a separator-protected first electrode; (c) impregnating a second mixture of a second electrode active material and a second electrolyte into pores of a second conductive porous rod to form a second electrode; (d) combining the separator-protected first electrode and second electrode form a braid or twist yarn; and (e) wrapping or encasing a protective sheath around the braid or yarn to form the supercapacitor.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: May 7, 2019
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10276856
    Abstract: A process for producing an electrode for an alkali metal battery, comprising: (a) Continuously feeding an electrically conductive porous layer to an anode or cathode material impregnation zone, wherein the conductive porous layer has two opposed porous surfaces and contain interconnected conductive pathways and at least 70% by volume of pores; (b) Impregnating a wet anode or cathode active material mixture into the porous layer from at least one of the two porous surfaces to form an anode or cathode electrode, wherein the wet anode or cathode active material mixture contains an anode or cathode active material and an optional conductive additive mixed with a liquid electrolyte; and (c) Supplying at least a protective film to cover the at least one porous surface to form the electrode.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: April 30, 2019
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang
  • Publication number: 20190115617
    Abstract: Provided is a surface-stabilized anode active material particulate (for use in a lithium battery), comprising: (a) one or a plurality of prelithiated or un-prelithiated anode active material particles (with or without a coating of carbon, graphene, or ion-conducting polymer); (b) a protecting polymer layer that wraps around, embraces or encapsulates the one or plurality of anode active material particles, wherein the protecting polymer layer has a thickness from 0.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 18, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190115591
    Abstract: Provided is particulate of a cathode active material for a lithium battery, comprising one or a plurality of cathode active material particles being embraced or encapsulated by a thin layer of a high-elasticity polymer having a recoverable tensile strain no less than 5%, a lithium ion conductivity no less than 10?6 S/cm at room temperature, and a thickness from 0.5 nm to 10 ?m, wherein the polymer contains an ultrahigh molecular weight (UHMW) polymer having a molecular weight from 0.5×106 to 9×106 grams/mole. The UHMW polymer is preferably selected from polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyethylene glycol, polyvinyl alcohol, polyacrylamide, poly(methyl methacrylate), poly(methyl ether acrylate), a copolymer thereof, a sulfonated derivative thereof, a chemical derivative thereof, or a combination thereof.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 18, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190108948
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising a cathode active material that contains a conductive carbon material and a porphyrin compound, wherein the porphyrin compound is bonded to or supported by the carbon material to form a redox pair for pseudocapacitance, wherein the carbon material is selected from activated carbon, activated carbon black, expanded graphite flakes, exfoliated graphite worms, carbon nanotube, carbon nanofiber, carbon fiber, a combination thereof; (B) a battery-like anode comprising lithium metal, lithium metal alloy, or a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 11, 2019
  • Publication number: 20190109358
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (a) a pseudocapacitance-like cathode comprising a cathode active material that contains both graphene sheets and a porphyrin compound, including porphyrin or a porphyrin complex, wherein the porphyrin compound is bonded to or supported by primary surfaces of graphene sheets to form a redox pair for pseudocapacitance; (b) a battery-like anode comprising an anode active material selected from sodium metal, a sodium metal alloy, a sodium intercalation compound, a sodium-containing compound, or a combination thereof, and (c) a sodium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 11, 2019
  • Patent number: 10256459
    Abstract: A prelithiated and surface-stabilized anode active material for use in a lithium battery, comprising a protected anode active material particle comprising a surface-stabilizing layer embracing a core particle, wherein the surface-stabilizing layer comprises a lithium- or sodium-containing species chemically bonded to the core particle and the lithium- or sodium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Li4B, Na4B, Na2CO3, Na2O, Na2C2O4, NaOH, NaiX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, NaxSOy, or a combination thereof, wherein X=F, Cl, I, or Br, R=a hydrocarbon group, 0<x?1, and 1?y?4; wherein the lithium- or sodium-containing species is preferably derived from an electrochemical decomposition reaction and the core particle is prelithiated to contain an amount of lithium from 1% to 100% of the maximum lithium content that can be included in the core particle of anode active material.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 9, 2019
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190103231
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising both graphene sheets and a 2D inorganic material, in a form of nanodiscs, nanoplatelets, or nanosheets that are bonded to or supported by primary surfaces (not the edges) of the graphene sheets and the 2D inorganic material and graphene sheets form a redox pair for pseudocapacitance; (B) a battery-like anode comprising a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 4, 2019
  • Publication number: 20190103232
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising a cathode active material that contains both graphene sheets and a porphyrin complex, wherein said porphyrin complex is bonded to or supported by primary surfaces of said graphene sheets to form a redox pair for pseudocapacitance; (B) a battery-like anode comprising lithium metal, lithium metal alloy, or a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
  • Patent number: 10243217
    Abstract: Provided is an alkali metal cell comprising: (a) a quasi-solid cathode containing about 30% to about 95% by volume of a cathode active material, about 5% to about 40% by volume of a first electrolyte containing an alkali salt dissolved in a solvent, and about 0.01% to about 30% by volume of a conductive additive wherein the conductive additive, containing conductive filaments, forms a 3D network of electron-conducting pathways such that the quasi-solid electrode has an electrical conductivity from about 10?6 S/cm to about 300 S/cm; (b) an anode; and (c) an ion-conducting membrane or porous separator disposed between the anode and the quasi-solid cathode; wherein the quasi-solid cathode has a thickness from 200 ?m to 100 cm and a cathode active material having an active material mass loading greater than 10 mg/cm2.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: March 26, 2019
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190088383
    Abstract: A process for producing a highly conducting film of conductor-bonded graphene sheets that are highly oriented, comprising: (a) preparing a graphene dispersion or graphene oxide (GO) gel; (b) depositing the dispersion or gel onto a supporting solid substrate under a shear stress to form a wet layer; (c) drying the wet layer to form a dried layer having oriented graphene sheets or GO molecules with an inter-planar spacing d002 of 0.4 nm to 1.2 nm; (d) heat treating the dried layer at a temperature from 55° C. to 3,200° C. for a desired length of time to produce a porous graphitic film having pores and constituent graphene sheets or a 3D network of graphene pore walls having an inter-planar spacing d002 less than 0.4 nm; and (e) impregnating the porous graphitic film with a conductor material that bonds the constituent graphene sheets or graphene pore walls to form the conducting film.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190088922
    Abstract: Provided is a process for producing prelithiated particles of an anode active material for a lithium battery. The process comprises: (a) providing a lithiating chamber having at least one inlet and at least one outlet; (b) feeding a plurality of particles of an anode active material, lithium metal particles, and an electrolyte solution (containing a lithium salt dissolved in a liquid solvent) into the lithiating chamber through at least one inlet, concurrently or sequentially, to form a reacting mixture; (c) moving this reacting mixture toward the outlet at a rate sufficient for inserting a desired amount of lithium into the anode active material particles to form a slurry of prelithiated particles dispersed in the electrolyte solution; and (d) discharging the slurry out of the lithiating chamber through the at least one outlet.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190088930
    Abstract: A prelithiated and surface-stabilized anode active material for use in a lithium battery, comprising a protected anode active material particle comprising a surface-stabilizing layer embracing a core particle, wherein the surface-stabilizing layer comprises a lithium- or sodium-containing species chemically bonded to the core particle and the lithium- or sodium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Li4B, Na4B, Na2CO3, Na2O, Na2C2O4, NaOH, NaiX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, NaxSOy, or a combination thereof, wherein X=F, Cl, I, or Br, R=a hydrocarbon group, 0<x?1, and 1?y?4; wherein the lithium- or sodium-containing species is preferably derived from an electrochemical decomposition reaction and the core particle is prelithiated to contain an amount of lithium from 1% to 100% of the maximum lithium content that can be included in the core particle of anode active material.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10236500
    Abstract: A method of operating a lithium-ion cell comprising (a) a cathode comprising a carbon or graphitic material having a surface area to capture and store lithium thereon; (b) an anode comprising an anode active material; (c) a porous separator disposed between the two electrodes; (d) an electrolyte in ionic contact with the two electrodes; and (e) a lithium source disposed in at least one of the two electrodes to obtain an open circuit voltage (OCV) from 0.5 volts to 2.8 volts when the cell is made; wherein the method comprises: (A) electrochemically forming the cell from the OCV to either a first lower voltage limit (LVL) or a first upper voltage limit (UVL), wherein the first LVL is no lower than 0.1 volts and the first UVL is no higher than 4.6 volts; and (B) cycling the cell between a second LVL and a second UVL.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: March 19, 2019
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190080856
    Abstract: Provided is a supercapacitor electrode, comprising: (a) preparing a deformable mass of multiple flakes of exfoliated graphite worms or expanded graphite dispersed in or impregnated by a liquid or gel electrolyte; and (b) subjecting the deformable mass to a forced assembling and orientating procedure, forcing the deformable mass to form the electrode, wherein these fakes are spaced by thin electrolyte layers, having an electrolyte layer thickness from 0.4 nm to 10 nm, and the flakes are substantially aligned along a desired direction, and wherein the electrode has a physical density from 0.5 to 1.7 g/cm3 and a specific surface area from 50 to 3,300 m2/g, when measured in a dried state of the flakes without the electrolyte. This supercapacitor has a large electrode thickness, high active mass loading, high tap density, and exceptional energy density.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 14, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190077669
    Abstract: Provided is a method of producing isolated graphene sheets directly from a carbon/graphite precursor. The method comprises: (a) providing a mass of aromatic molecules wherein the aromatic molecules are selected from petroleum heavy oil or pitch, coal tar pitch, a polynuclear hydrocarbon, or a combination thereof; (b) heat treating this mass and using chemical or mechanical means to form graphene domains dispersed in a disordered matrix of carbon or hydrocarbon molecules, wherein the graphene domains are each composed of from 1 to 30 planes of hexagonal carbon atoms or fused aromatic rings having a length or width from 5 nm to 20 ?m and an inter-graphene space between two planes of hexagonal carbon atoms or fused aromatic rings no less than 0.4 nm; and (c) separating and isolating the planes of hexagonal carbon atoms or fused aromatic rings to recover graphene sheets from the disordered matrix.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang