Patents Assigned to Nanotek Instruments, Inc.
-
Publication number: 20190260028Abstract: Provided is an anode active material layer for a lithium battery. This layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of a high-capacity anode active material being encapsulated by a thin layer of elastomeric material that has a lithium ion conductivity no less than 10?7 S/cm (preferably no less than 10?5 S/cm) at room temperature and an encapsulating shell thickness from 1 nm to 10 ?m, and wherein the high-capacity anode active material (e.g. Si, Ge, Sn, SnO2, Co3O4, etc.) has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).Type: ApplicationFiled: February 21, 2018Publication date: August 22, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190260015Abstract: A method of producing a powder mass for a lithium battery, the method comprising: (a) Providing a solution containing a sulfonated elastomer dissolved in a solvent or a precursor in a liquid form or dissolved in a solvent; (b) dispersing a plurality of particles of an anode active material in the solution to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing/curing the precursor to form the powder mass, wherein the powder mass comprises multiple particulates and at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of sulfonated elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm at room temperature.Type: ApplicationFiled: February 27, 2018Publication date: August 22, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Patent number: 10388983Abstract: A process for producing a lithium battery, comprising: (A) Assembling a porous cell framework composed of a foamed anode current collector, a foamed cathode current collector, and a porous separator disposed between the two collectors; wherein the current collector(s) has a thickness no less than 100 ?m and at least 80% by volume of pores; (B) Preparing a first suspension of an anode active material dispersed in a first liquid electrolyte and a second suspension of a cathode active material dispersed in a second liquid electrolyte; and (C) Injecting the first suspension into pores of the anode current collector to form an anode and injecting the second suspension into pores of the cathode current collector to form a cathode to an extent that the anode active material and the cathode active material combined constitutes an electrode active material mass loading no less than 40% of the total battery cell weight.Type: GrantFiled: August 24, 2015Date of Patent: August 20, 2019Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190252088Abstract: A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.Type: ApplicationFiled: April 19, 2019Publication date: August 15, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190252131Abstract: A graphene-enabled hybrid particulate for use as an anode active material in a hybrid supercapacitor or lithium-ion capacitor, wherein the hybrid particulate is formed of a single or a plurality of graphene sheets and a single or a plurality of fine primary particles of a niobium-containing composite metal oxide, having a size from 1 nm to 10 ?m, and the graphene sheets and the primary particles are mutually bonded or agglomerated into the hybrid particulate containing an exterior graphene sheet or multiple exterior graphene sheets embracing the primary particles, and wherein the hybrid particulate has an electrical conductivity no less than 10?4 S/cm and said graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the niobium-containing composite metal oxide combined.Type: ApplicationFiled: February 13, 2018Publication date: August 15, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Patent number: 10361460Abstract: A process for producing a lithium battery, comprising: (A) Preparing a plurality of conductive porous layers, wet anode layers, and wet cathode layers; (B) Stacking a desired number of porous layers and wet anode layers in an alternating manner to form an anode electrode having a thickness no less than 100 ?m; (C) Placing a porous separator layer in contact with the anode electrode; (D) Stacking a desired number of porous layers wet cathode layers in an alternating manner to form a cathode electrode in contact with the porous separator, wherein the cathode electrode has a thickness no less than 100 ?m; and (F) Assembling and sealing the anode electrode, separator, and cathode electrode in a housing to produce the lithium battery. The consolidated anode or cathode layer is preferably thicker than 300 ?m more preferably thicker than 400 ?m, and further more preferably greater than 500 ?m.Type: GrantFiled: October 2, 2015Date of Patent: July 23, 2019Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z Jang
-
Publication number: 20190210345Abstract: A process for producing a graphene paper product of metal-bonded graphene sheets, comprising: (a) preparing a graphene dispersion having discrete graphene sheets dispersed in a fluid medium, wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene material or a non-pristine graphene material, wherein the non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof; (b) assembling the graphene sheets into a paper product containing a sheet or a roll of graphene paper; and (c) depositing a metal on surfaces of graphene sheets to bond graphene sheets together for forming the graphene paper product, which contains off-plane graphene sheets.Type: ApplicationFiled: January 8, 2018Publication date: July 11, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190206632Abstract: Provided is a supercapacitor comprising an anode, a cathode, an ion-permeable separator disposed between the anode and the cathode, and an electrolyte in ionic contact with the anode and the cathode, wherein at least one of the anode and the cathode contains multiple graphene sheets spaced by cellulosic nanofibers and has a specific surface area from 50 to 3,300 m2/g. Also provided is a process for producing an electrode for such a supercapacitor having a large electrode thickness, high active mass loading, high tap density, and exceptional energy density.Type: ApplicationFiled: January 3, 2018Publication date: July 4, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190207200Abstract: A process for producing an electrode for an alkali metal battery, comprising: (a) Continuously feeding an electrically conductive porous layer to an anode or cathode material impregnation zone, wherein the conductive porous layer has two opposed porous surfaces and contain interconnected conductive pathways and at least 70% by volume of pores; (b) Impregnating a wet anode or cathode active material mixture into the porous layer from at least one of the two porous surfaces to form an anode or cathode electrode, wherein the wet anode or cathode active material mixture contains an anode or cathode active material and an optional conductive additive mixed with a liquid electrolyte; and (c) Supplying at least a protective film to cover the at least one porous surface to form the electrode.Type: ApplicationFiled: March 8, 2019Publication date: July 4, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Patent number: 10332693Abstract: A supercapacitor electrode comprising a mixture of graphene sheets and humic acid, wherein humic acid occupies 0.1% to 99% by weight of the mixture and the graphene sheets are selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 5% by weight of non-carbon elements wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, chemically functionalized graphene, or a combination thereof; and wherein said mixture has a specific surface area greater than 500 m2/g.Type: GrantFiled: July 15, 2016Date of Patent: June 25, 2019Assignee: Nanotek Instruments, Inc.Inventors: Song-Hai Chai, Aruna Zhamu, Bor Z. Jang
-
Patent number: 10326168Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from (A) non-Li alkali metals; (B) alkaline-earth metals; (C) transition metals; (D) other metals such as aluminum (Al); or (E) a combination thereof; and wherein at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with said electrolyte, and wherein the operation of the battery device does not involve the introduction of oxygen from outside the device and does not involve the formation of a metal oxide, metal sulfide, metal selenide, metal telluride, metal hydroxide, or metal-halogen compound.Type: GrantFiled: July 25, 2014Date of Patent: June 18, 2019Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z Jang
-
Patent number: 10319487Abstract: A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.Type: GrantFiled: November 17, 2016Date of Patent: June 11, 2019Assignee: Nanotek Instruments, Inc.Inventors: Yi-Jun Lin, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190173082Abstract: Provided is method of producing anode or cathode particulates for an alkali metal battery. The method comprises: (a) preparing a slurry containing particles of an anode or cathode active material, an electron-conducting material, and an electrolyte containing a lithium salt or sodium salt and an optional polymer dissolved in a liquid solvent; and (b) conducting a particulate-forming means to convert the slurry into multiple anode or cathode particulates, wherein an anode or a cathode particulate is composed of (i) particles of the active material, (ii) the electron-conducting material, and (iii) an electrolyte, wherein the electron-conducting material forms a 3D network of electron-conducting pathways and the electrolyte forms a 3D network of lithium ion- or sodium ion-conducting channels and wherein the anode particulate or cathode particulate has a dimension from 10 nm to 100 ?m and an electrical conductivity from about 10?6 S/cm to about 300 S/cm.Type: ApplicationFiled: December 5, 2017Publication date: June 6, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
-
Publication number: 20190173079Abstract: Provided is method of producing anode or cathode particulates for an alkali metal battery.Type: ApplicationFiled: January 2, 2018Publication date: June 6, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
-
Publication number: 20190165374Abstract: Provided is an anode particulate, having a dimension from 10 nm to 300 ?m, for use in an alkali metal battery, the particulate comprising (i) an anode active material capable of reversibly absorbing/desorbing lithium or sodium ions, (ii) an electron-conducting material, and (iii) a lithium or sodium salt with an optional polymer or its monomer, but without a liquid solvent, for an electrolyte, wherein the electron-conducting material forms a 3D network of electron-conducting pathways in electronic contact with the anode active material and the lithium or sodium salt is in physical contact with the anode active material (so that the salt, when later impregnated with a liquid solvent, becomes an electrolyte forming a 3D network of lithium or sodium ion-conducting channels in ionic contact with the anode active material). The particulate can be of any shape, but preferably spherical or ellipsoidal in shape. Also provided is a cathode particulate.Type: ApplicationFiled: January 2, 2018Publication date: May 30, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
-
Publication number: 20190165363Abstract: A lithium-ion battery anode layer, comprising an anode active material embedded in pores of a solid graphene foam composed of multiple pores and pore walls, wherein (a) the pore walls contain a pristine graphene or a non-pristine graphene material; (b) the anode active material contains particles of a niobium-containing composite metal oxide and is in an amount from 0.5% to 99% by weight based on the total weight of the graphene foam and the anode active material combined, and (c) the multiple pores are lodged with particles of the anode active material. Preferably, the solid graphene foam has a density from 0.01 to 1.7 g/cm3, a specific surface area from 50 to 2,000 m2/g, a thermal conductivity of at least 100 W/mK per unit of specific gravity, and/or an electrical conductivity no less than 1,000 S/cm per unit of specific gravity.Type: ApplicationFiled: November 27, 2017Publication date: May 30, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190165365Abstract: Provided is an anode particulate, having a dimension from 10 nm to 100 ?m, for use in an alkali metal battery, the particulate comprising (i) an anode active material capable of reversibly absorbing and desorbing lithium ions or sodium ions, (ii) an electron-conducting material, and (iii) a lithium ion-conducting or sodium ion-conducting electrolyte, wherein the electron-conducting material forms a three dimensional network of electron-conducting pathways in electronic contact with the anode active material and the electrolyte forms a three dimensional network of lithium ion- or sodium ion-conducting channels in ionic contact with the anode active material. The particulate can be of any shape, but preferably spherical or ellipsoidal in shape.Type: ApplicationFiled: November 30, 2017Publication date: May 30, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
-
Publication number: 20190165364Abstract: A graphene-enabled hybrid particulate for use as a lithium-ion battery anode active material, wherein the hybrid particulate is formed of a single or a plurality of graphene sheets and a single or a plurality of fine primary particles of a niobium-containing composite metal oxide, having a size from 1 nm to 10 ?m, and the graphene sheets and the primary particles are mutually bonded or agglomerated into the hybrid particulate containing an exterior graphene sheet or multiple exterior graphene sheets embracing the primary particles, and wherein the hybrid particulate has an electrical conductivity no less than 10?4 S/cm and said graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the niobium-containing composite metal oxide combined.Type: ApplicationFiled: November 27, 2017Publication date: May 30, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z Jang
-
Publication number: 20190152784Abstract: Provided is a method of producing isolated graphene sheets, comprising: (a) providing a reacting slurry containing a mixture of particles of a graphite or carbon material and an intercalant and/or an oxidizing agent; (b) providing one or a plurality of flow channels to accommodate the reacting slurry, wherein at least one of the flow channels has an internal wall surface and a volume and an internal wall-to-volume ratio of from 10 to 4,000; (c) moving the reacting slurry continuously or intermittently through at least one or a plurality of flow channels, enabling reactions between the graphite or carbon particles and the intercalant and/or oxidant to occur substantially inside the flow channels to form a graphite intercalation compound (GIC) or oxidized graphite (e.g. graphite oxide) or oxidized carbon material as a precursor material; and (d) converting the precursor material to isolated graphene sheets.Type: ApplicationFiled: November 20, 2017Publication date: May 23, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z Jang
-
Publication number: 20190143656Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of combined multiple graphene sheets and an optional conductive filler (e.g. metal nanowires or carbon nanofibers) coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene, and wherein the multiple graphene sheets and conductive filler are bonded to the polymer component surface with or without an adhesive resin. In certain embodiments, this article is selected from a vehicle component, an electronic appliance, an electronic device, a food packaging film or bag, a protective clothing, an antistatic film or bag, a susceptor in microwave cooking, a blanket, an anti-reflection accessary, a toy, a product label, a mailer, a sports card, a greeting card, a solar control window film, or a stamping foil.Type: ApplicationFiled: March 19, 2018Publication date: May 16, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang