Patents Assigned to Nanotek Instruments, Inc.
-
Publication number: 20190292722Abstract: Provided is process for producing a surface-metalized fiber, yarn, or fabric, the process comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conductive filler dispersed in a first liquid medium, which is an adhesive monomer or contains a liquid adhesive monomer or oligomer dissolved in a solvent; (b) feeding a continuous fiber, yarn, or fabric from a feeder roller into a deposition zone, wherein the graphene dispersion is dispensed to deposit the graphene sheets to a surface of the fiber, yarn, or fabric; (c) moving the graphene-coated fiber, yarn, or fabric into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated fiber, yarn, or fabric to obtain a surface-metalized fiber, yarn, or fabric; and (d) operating a winding roller to collect the surface-metalized fiber, yarn, or fabric.Type: ApplicationFiled: April 2, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190292676Abstract: Provided is process for producing a surface-metalized polymer film, the process comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium, which is an adhesive monomer/oligomer or contains a liquid adhesive monomer/oligomer/polymer dissolved in a solvent; (b) feeding a continuous polymer film from a feeder roller into a deposition zone, wherein the graphene dispersion is dispensed to deposit the graphene sheets to a surface of the polymer film; (c) moving the graphene-coated polymer film into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated polymer film to obtain a surface-metalized polymer film; and (d) operating a winding roller to collect the surface-metalized polymer film.Type: ApplicationFiled: April 2, 2018Publication date: September 26, 2019Applicant: Nanotek instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190292721Abstract: Provided is process for producing a surface-metalized fiber, yarn, or fabric, the process comprising: (a) Feeding a continuous fiber, yarn, or fabric from a feeder roller into a graphene deposition chamber containing therein a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in the first liquid medium; (b) Operating the graphene deposition chamber to deposit the graphene sheets and optional conductive filler to a surface of the fiber, yarn, or fabric for forming a graphene-coated fiber, yarn, or fabric; (c) Moving the graphene-coated fiber, yarn, or fabric into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated fiber, yarn, or fabric to obtain a surface-metalized fiber, yarn, or fabric; and (d) Operating a winding roller to collect the surface-metalized fiber, yarn, or fabric.Type: ApplicationFiled: March 20, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190292720Abstract: Provided is surface-metalized fiber, yarn, or fabric comprising: (a) a fiber, yarn, or fabric having a surface; (b) a graphene layer having a thickness from 0.34 nm to 20 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to the surface, with or without using an adhesive resin, to form a graphene-coated fiber, yarn, or fabric; and (c) a metal layer comprising a plated metal deposited on the graphene-coated fiber, yarn, or fabric; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.Type: ApplicationFiled: March 20, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190292671Abstract: Provided is a metal matrix nanocomposite comprising: (a) a metal or metal alloy as a matrix material; and (b) multiple graphene sheets that are dispersed in said matrix material, wherein said multiple graphene sheets are substantially aligned to be parallel to one another and are in an amount from 0.1% to 95% by volume based on the total nanocomposite volume; wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof and wherein the chemically functionalized graphene is not graphene oxide. The metal matrix exhibits a combination of exceptional tensile strength, modulus, thermal conductivity, and/or electrical conductivity.Type: ApplicationFiled: March 26, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Yi-jun Lin, Bor Z. Jang
-
Publication number: 20190292675Abstract: Provided is a process for producing a surface-metalized polymer film, comprising: (a) feeding a continuous polymer film from a feeder into a graphene deposition chamber which accommodates a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in this first liquid medium; (b) operating the graphene deposition chamber to deposit the graphene sheets and optional conductive filler to at least a primary surface of the polymer film for forming a graphene-coated polymer film; (c) moving the graphene-coated film into a metallization chamber which accommodates a plating solution for plating a layer of a desired metal onto the graphene-coated polymer film to obtain a surface-metalized polymer film; and (d) operating a winding roller to collect the surface-metalized polymer film.Type: ApplicationFiled: March 20, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190292672Abstract: Provided is a metal matrix nanocomposite comprising: (a) a metal or metal alloy as a matrix material; and (b) multiple graphene sheets that are dispersed in said matrix material, wherein said multiple graphene sheets are substantially aligned to be parallel to one another and are in an amount from 0.1% to 95% by volume based on the total nanocomposite volume; wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof and wherein the chemically functionalized graphene is not graphene oxide. The metal matrix exhibits a combination of exceptional tensile strength, modulus, thermal conductivity, and/or electrical conductivity.Type: ApplicationFiled: March 26, 2018Publication date: September 26, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Yi-jun Lin, Bor Z. Jang
-
Publication number: 20190283379Abstract: Provided is a surface-metalized polymer film comprising: (a) a polymer film having a thickness from 10 nm to 5 mm and two primary surfaces; (b) a graphene layer having a thickness from 0.34 nm to 50 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to at least one of the two primary surfaces with or without using an adhesive resin; and (c) a metal layer comprising a plated metal deposited on the graphene layer; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.Type: ApplicationFiled: March 19, 2018Publication date: September 19, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190284712Abstract: Provided is a surface-metalized polymer film comprising: (a) a polymer film having a thickness from 10 nm to 5 mm and two primary surfaces; (b) a graphene layer having a thickness from 0.34 nm to 50 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to at least one of the two primary surfaces with or without using an adhesive resin; and (c) a metal layer comprising a plated metal deposited on the graphene layer; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.Type: ApplicationFiled: March 19, 2018Publication date: September 19, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190283378Abstract: Provided is an apparatus for manufacturing a surface-metalized polymer article, the apparatus comprising: (a) a graphene deposition chamber that accommodates a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in the first liquid medium, wherein the graphene deposition chamber is operated to deposit the graphene sheets and optional conductive filler to a surface of at least a polymer component for forming at least a graphene-coated polymer component; and (b) a metallization chamber that accommodates a plating solution for plating a layer of a desired metal on the at least a graphene-coated polymer component to obtain the surface-metalized polymer article.Type: ApplicationFiled: March 19, 2018Publication date: September 19, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190283377Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of combined multiple graphene sheets and a conductive filler (e.g. metal nanowires or carbon nanofibers) coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene, and wherein the multiple graphene sheets and conductive filler are bonded to the polymer component surface with or without an adhesive resin.Type: ApplicationFiled: March 19, 2018Publication date: September 19, 2019Applicant: Nanotek Instruments, Inc.Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
-
Patent number: 10418662Abstract: Provided is a cable-shaped alkali metal battery comprising: (a) a first electrode comprising an electrically conductive porous rod having pores and a first mixture of a first electrode active material and a first electrolyte, wherein the first mixture resides in the pores of the porous rod; (b) a porous separator wrapping around the first electrode; (c) a second electrode comprising an electrically conductive porous layer wrapping around or encasing the porous separator, wherein the conductive porous layer contains pores and a second mixture of a second electrode active material and a second electrolyte, and the second mixture resides in the pores of the porous layer; and (d) a protective casing or packing tube wrapping around or encasing the second electrode.Type: GrantFiled: December 20, 2016Date of Patent: September 17, 2019Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Hui He, Baofei Pan, Yu-Sheng Su, Bor Z Jang
-
Publication number: 20190280291Abstract: Provided is a lithium battery anode electrode comprising multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of inorganic filler-reinforced elastomer having from 0.01% to 50% by weight of an inorganic filler dispersed in an elastomeric matrix material based on the total weight of the inorganic filler-reinforced elastomer, wherein the encapsulating thin layer of inorganic filler-reinforced elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V (preferably 1.2-2.5 V) versus Li/Li+. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc.Type: ApplicationFiled: March 7, 2018Publication date: September 12, 2019Applicant: Nanotek Instruments, Inc.Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190280301Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing an inorganic filler and an elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of an anode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass, wherein at least a particulate is composed of one or a plurality of anode particles being encapsulated by a layer of inorganic filler-reinforced elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V versus Li/Li+.Type: ApplicationFiled: March 7, 2018Publication date: September 12, 2019Applicant: Nanotek Instruments, Inc.Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
-
Patent number: 10411291Abstract: Provided is a multivalent metal-ion battery comprising an anode, a cathode, and an electrolyte in ionic contact with the anode and the cathode to support reversible deposition and dissolution of a multivalent metal, selected from Ni, Zn, Be, Mg, Ca, Ba, La, Ti, Ta, Zr, Nb, Mn, V, Co, Fe, Cd, Cr, Ga, In, or a combination thereof, at the anode, wherein the anode contains the multivalent metal or its alloy as an anode active material and the cathode comprises a cathode active layer of graphitic carbon particles or fibers that are coated with a protective material. Such a metal-ion battery delivers a high energy density, high power density, and long cycle life.Type: GrantFiled: March 22, 2017Date of Patent: September 10, 2019Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190273249Abstract: Provided is an anode active material electrode for a lithium battery. This electrode layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of sulfonated elastomer/graphene composite having from 0.01% to 50% by weight of graphene sheets dispersed in a sulfonated elastomeric matrix material, wherein the encapsulating shell composite has a thickness from 1 nm to 10 ?m, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm when measured at room temperature. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc., which has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).Type: ApplicationFiled: March 2, 2018Publication date: September 5, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190272963Abstract: A supercapacitor electrode comprising a mixture of graphene sheets and humic acid, wherein humic acid occupies 0.1% to 99% by weight of the mixture and the graphene sheets are selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 5% by weight of non-carbon elements wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, chemically functionalized graphene, or a combination thereof; and wherein said mixture has a specific surface area greater than 500 m2/g.Type: ApplicationFiled: May 10, 2019Publication date: September 5, 2019Applicant: Nanotek Instruments, Inc.Inventors: Song-Hai Chai, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190273250Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing graphene sheets and a sulfonated elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of an anode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass comprising multiple particulates, wherein at least one of the particulates is composed of one or a plurality of the particles encapsulated by a thin layer of a sulfonated elastomer/graphene composite having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and an electrical conductivity from 10?7 S/cm to 100 S/cm.Type: ApplicationFiled: March 2, 2018Publication date: September 5, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190267663Abstract: A method of producing a powder mass for a lithium battery, the method comprising: (a) mixing graphene sheets and an elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of an anode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing/curing the precursor to form the powder mass, wherein the powder mass comprises multiple particulates of the anode active material, wherein at least one of the particulates is composed of one or a plurality of the particles encapsulated by a thin layer of graphene/elastomer composite having a thickness from 1 nm to 10 ?m, a lithium ion conductivity from 10?7 S/cm to 10?2 S/cm and an electrical conductivity from 10?7 S/cm to 100 S/cm.Type: ApplicationFiled: February 23, 2018Publication date: August 29, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang
-
Publication number: 20190267662Abstract: Provided is an anode active material layer for a lithium battery. This layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of graphene/elastomer composite having from 0.01% to 50% by weight of graphene sheets dispersed in an elastomeric matrix material, wherein the encapsulating shell (the thin layer of composite) has a thickness from 1 nm to 10 ?m and the graphene/elastomer composite has a lithium ion conductivity from 10?7 S/cm to 10?2 S/cm and an electrical conductivity from 10?7 S/cm to 100 S/cm when measured at room temperature. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc., which has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).Type: ApplicationFiled: February 23, 2018Publication date: August 29, 2019Applicant: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z. Jang