Patents Assigned to NASA
  • Patent number: 9371140
    Abstract: A system and method for providing information to a crew of the aircraft while in-flight. The system includes a module having: a receiver for receiving a message while in-flight; a filter having a set of screening parameters and operative to filter the message based on the set of screening parameters; and a converter for converting the message into an audible message. The message includes a pilot report having at least one of weather information, separation information, congestion information, flight deviation information and destination information. The message is sent to the aircraft by another aircraft or an air traffic controller.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: June 21, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Walter W Johnson, Joel B. Lachter, Vernol Battiste, Robert W Koteskey
  • Patent number: 9336484
    Abstract: An efficient method and system for real-time or offline analysis of multivariate sensor data for use in anomaly detection, fault detection, and system health monitoring is provided. Models automatically derived from training data, typically nominal system data acquired from sensors in normally operating conditions or from detailed simulations, are used to identify unusual, out of family data samples (outliers) that indicate possible system failure or degradation. Outliers are determined through analyzing a degree of deviation of current system behavior from the models formed from the nominal system data. The deviation of current system behavior is presented as an easy to interpret numerical score along with a measure of the relative contribution of each system parameter to any off-nominal deviation. The techniques described herein may also be used to “clean” the training data.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 10, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventor: David J. Iverson
  • Patent number: 9327822
    Abstract: The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 3, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: John E. Melton, Michael R. Dudley
  • Patent number: 9318295
    Abstract: A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: April 19, 2016
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NASA
    Inventor: Cattien V. Nguyen
  • Patent number: 9296474
    Abstract: Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: March 29, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Nhan T. Nguyen, John J. Burken, Curtis E. Hanson
  • Patent number: 9297907
    Abstract: System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values ?EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values ?EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or ?, associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured ?EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: March 29, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Jing Li, Richard T. Wilkins, James J. Hanratty, Yijiang Lu
  • Patent number: 9274181
    Abstract: The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 1, 2016
    Assignees: The United States of America, as Represented by the Adminstrator of NASA, The Regents of the University of California
    Inventors: Gregory P. Carman, Panduranga K. Mohanchandra, Michael C. Emmons, William Lance Richards
  • Patent number: 9227721
    Abstract: An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: January 5, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventor: Nhan T. Nguyen
  • Patent number: 9182394
    Abstract: Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal (“AN-metal,” such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200° C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 ?m, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(?1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: November 10, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventor: Meyya Meyyappan
  • Patent number: 9171473
    Abstract: A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 27, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: B. David McNally, Heinz Erzberger, Kapil Sheth
  • Patent number: 9120677
    Abstract: A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: September 1, 2015
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Kent Watson, Yi Lin, Sayata Ghose, John Connell
  • Patent number: 9067385
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 30, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert George Bryant
  • Patent number: 9033525
    Abstract: Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: May 19, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventor: Bin Chen
  • Patent number: 9023182
    Abstract: The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: May 5, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventor: George W. Cooper
  • Patent number: 9024510
    Abstract: A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: May 5, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventor: Bin Chen
  • Patent number: 8986513
    Abstract: A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 24, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as Represented by the Administration of NASA
    Inventors: R. Roy Whitney, Kevin Jordan, Michael W. Smith
  • Patent number: 8976351
    Abstract: A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 10, 2015
    Assignees: The United States of America as Represented by NASA, The George Washington University
    Inventors: Daniel Bivolaru, Andrew D. Cutler, Paul M. Danehy
  • Patent number: 8940145
    Abstract: A supercapacitor electrode mechanism comprising an electrically conductive, porous substrate, having one or more metallic oxides deposited on a first surface and a chemically reduced graphene oxide deposited on a second surface, to thereby provide an electrical double layer associated with the substrate. The substrate may be carbon paper or a similar substance. The layers of the supercapacitor are optionally rolled into an approximately cylindrical structure.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 27, 2015
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Bin Chen, Meyya Meyyappan
  • Patent number: 8924069
    Abstract: A method and system for control of a first aircraft relative to a second aircraft. A desired location and desired orientation are estimated for the first aircraft, relative to the second aircraft, at a subsequent time, t=t2, subsequent to the present time, t=t1, where the second aircraft continues its present velocity during a subsequent time interval, t1?t?t2, or takes evasive action. Action command sequences are examined, and an optimal sequence is chosen to bring the first aircraft to the desired location and desired orientation relative to the second aircraft at time t=t2. The method applies to control of combat aircraft and/or of aircraft in a congested airspace.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 30, 2014
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: John T. Kaneshige, Kalmanje S. Krishnakumar
  • Patent number: 8924736
    Abstract: A method of authenticating or declining to authenticate an asserted identity of a candidate-person. In an enrollment phase, a reference PQRST heart action graph is provided or constructed from information obtained from a plurality of graphs that resemble each other for a known reference person, using a first graph comparison metric. In a verification phase, a candidate-person asserts his/her identity and presents a plurality of his/her heart cycle graphs. If a sufficient number of the candidate-person's measured graphs resemble each other, a representative composite graph is constructed from the candidate-person's graphs and is compared with a composite reference graph, for the person whose identity is asserted, using a second graph comparison metric. When the second metric value lies in a selected range, the candidate-person's assertion of identity is accepted.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 30, 2014
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Sorin V. Dusan, Charles C. Jorgensen