Patents Assigned to NASA
  • Patent number: 8069001
    Abstract: An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: November 29, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Sergey Gorbunov, Edward R. Martinez, James B. Scott, Tomomi Oishi, Johnny Fu, Joseph G. Mach, Jose B. Santos
  • Patent number: 8000903
    Abstract: Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 16, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Asministration (NASA)
    Inventor: Jing Li
  • Publication number: 20110180700
    Abstract: A wind and temperature spectrometer (WTS) may detect the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. The measured energy distribution at a known angle near the peak may be used to infer the full wind vector W. A WTS having a single ion source may be used in conjunction with a crossed small-deflection energy analyzer (SDEA). The crossed SDEA may combine the angular and energy distributions in the two mutually perpendicular planes into a single spectrometer with a single optical axis. A WTS having a single ion source may use less energy and occupy less space than a WTS with two ion sources.
    Type: Application
    Filed: January 28, 2010
    Publication date: July 28, 2011
    Applicant: NASA HQ's
    Inventors: FEDERICO A. HERRERO, THEODORE T. FINNE
  • Publication number: 20110157600
    Abstract: An optical telescope system, method of actively, adaptively providing optical control to an array of articulated mirrors in a sparse aperture in the optical telescope system and a computer program product therefor. Array apertures are selected sequentially for imaging. Each aperture is temporally modulating at a unique/different frequency and, simultaneously, focal plane images are detected for each array aperture with known and separable temporal dependencies. The images are processed for the current set of said focal plane images to detect an image wavefront. The feeding back wavefront errors are fed back to aperture actuators for controlling the array.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicants: NASA
    Inventor: Richard G. Lyon
  • Patent number: 7968054
    Abstract: A system for receiving, analyzing and communicating results of sensing chemical and/or physical parameter values, using wireless transmission of the data. Presence or absence of one or more of a group of selected chemicals in a gas or vapor is determined, using suitably functionalized carbon nanostructures that are exposed to the gas. One or more physical parameter values, such as temperature, vapor pressure, relative humidity and distance from a reference location, are also sensed for the gas, using nanostructures and/or microstructures. All parameter values are transmitted wirelessly to a data processing site or to a control site, using an interleaving pattern for data received from different sensor groups, using I.E.E.E. 802.11 or 802.15 protocol, for example. Methods for estimating chemical concentration are discussed.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: June 28, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventor: Jing Li
  • Patent number: 7939734
    Abstract: Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes (“CNTs”) is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 10, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jun Li, Meyya Meyyappan, Alan M. Cassell
  • Publication number: 20110066284
    Abstract: A method of determining complete sensor requirements for autonomous mobility of an autonomous system includes computing a time variation of each behavior of a set of behaviors of the autonomous system, determining mobility sensitivity to each behavior of the autonomous system, and computing a change in mobility based upon the mobility sensitivity to each behavior and the time variation of each behavior. The method further includes determining the complete sensor requirements of the autonomous system through analysis of the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior, wherein the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior are characteristic of the stability of the autonomous system.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 17, 2011
    Applicant: NASA HQ's.
    Inventor: Steven A. Curtis
  • Publication number: 20110049329
    Abstract: According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 3, 2011
    Applicant: NASA HQ's
    Inventors: Lee D. Feinberg, Bruce H. Dean, Tristram T. Hyde
  • Patent number: 7875455
    Abstract: A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jing Li, Meyya Meyyappan
  • Publication number: 20100314810
    Abstract: A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 16, 2010
    Applicant: USA as represented by the Administrator of NASA
    Inventors: Christopher M. Cagle, Robin W. Schlecht
  • Publication number: 20100296077
    Abstract: A three-dimensional range imager includes a light source for providing a modulated light signal, a multiplexer, an optical fiber connecting the light source to the multiplexer, a plurality of optical fibers connected at first ends to the multiplexer and at second ends to a first fiber array, and a transmitter optic disposed adjacent the first fiber array for projecting a pixel pattern of the array onto a target.
    Type: Application
    Filed: November 1, 2007
    Publication date: November 25, 2010
    Applicant: NASA Headquarters
    Inventors: VIBART STAN SCOTT, James Bryan Blair, Luis R. Izquierdo
  • Publication number: 20100257505
    Abstract: Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies. Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable.
    Type: Application
    Filed: September 18, 2006
    Publication date: October 7, 2010
    Applicant: NASA HQ's
    Inventors: Michael G. HINCHEY, James L. RASH, Walter F. TRUSZKOWSKI, Christopher A. ROUFF, Roy STERRITT, Denis Gracanin
  • Patent number: 7801687
    Abstract: Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 21, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jing Li, Meyya Meyyappan
  • Patent number: 7795388
    Abstract: The present invention provides chaperonin polypeptides which are modified to include N-terminal and C-terminal ends that are relocated from the central pore region to various different positions in the polypeptide which are located on the exterior of the folded modified chaperonin polypeptide. In the modified chaperonin polypeptide, the naturally-occurring N-terminal and C-terminal ends are joined together directly or with an intervening linker peptide sequence. The relocated N-terminal or C-terminal ends can be covalently joined to, or bound with another molecule such as a nucleic acid molecule, a lipid, a carbohydrate, a second polypeptide, or a nanoparticle. The modified chaperonin polypeptides can assemble into double-ringed chaperonin structures. Further, the chaperonin structures can organize into higher order structures such as nanofilaments or nanoarrays which can be used to produce nanodevices and nanocoatings.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: September 14, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Chad D. Paavola, Jonathan D. Trent, Suzanne L. Chan, Yi-Fen Li, R. Andrew McMillan, Hiromi Kagawa
  • Patent number: 7767305
    Abstract: Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000° F. and above.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: August 3, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: David A. Stewart, Daniel B. Leiser, Robert R. DiFiore, Victor W. Katvala
  • Publication number: 20100178680
    Abstract: A rotatable perfused time varying electromagnetic force bioreactor with a rotatable perfusable culture chamber and a time varying electromagnetic force source operatively connected to the rotatable perfusable culture chamber. In use, the rotatable perfused time varying electromagnetic force bioreactor supplies a time varying electromagnetic force to the rotatable perfusable culture chamber of the rotatable perfused time varying electromagnetic force bioreactor to expand cells contained therein.
    Type: Application
    Filed: June 26, 2006
    Publication date: July 15, 2010
    Applicants: REGENETECH, INC., NASA
    Inventors: Thomas J. Goodwin, Clayton R. Parker
  • Patent number: 7718223
    Abstract: A method for controlling density or tower height of carbon nanotube (CNT) arrays grown in spaced apart first and second regions on a substrate. CNTs having a first density range (or first tower height range) are grown in the first region using a first source temperature range for growth. Subsequently or simultaneously, CNTs having a second density range (or second tower height range), having an average density (or average tower height) in the second region different from the average density (or average tower height) for the first region, are grown in the second region, using supplemental localized heating for the second region. Applications for thermal dissipation and/or dissipation of electrical charge or voltage in an electronic device are discussed.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: May 18, 2010
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Lance D. Delzeit, John F. Schipper
  • Patent number: 7704553
    Abstract: A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 27, 2010
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Kent A. Watson, Michael J. Fallbach, Sayata Ghose, Joseph G. Smith, Donavon M. Delozier, John W. Connell
  • Patent number: 7704547
    Abstract: Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (“CNT”) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: April 27, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Lance D. Delzeit, John F. Schipper
  • Patent number: D628609
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 7, 2010
    Assignees: GM Global Technology Operations, Inc., NASA Lyndon B. Johnson Space Center, Oceaneering Space Systems
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Robert O. Ambrose, Joshua S Mehling, Myron A Diftler, Adam H Parsons, Nicolaus A Radford, Lyndon Bridgwater, Heather Bibby