Patents Assigned to National Semiconductor Corporation
  • Patent number: 8279644
    Abstract: A method for providing a maximum power point tracking (MPPT) process for an energy generating device is provided. The method includes coupling a local converter to the energy generating device. A determination is made regarding whether the local converter is operating at or below a maximum acceptable temperature. A determination is made regarding whether at least one current associated with the local converter is acceptable. When the local converter is determined to be operating at or below the maximum acceptable temperature and when the at least one current associated with the local converter is determined to be acceptable, the MPPT process is enabled within the local converter.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 2, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jianhui Zhang, Ali Djabbari, Gianpaolo Lisi
  • Patent number: 8274824
    Abstract: A memory cell includes a control gate and a transistor having a gate, a source junction, and a drain junction. The gate is coupled to the control gate, and the source junction and the drain junction are asymmetrical. For example, a channel doping associated with the source junction may be different than a channel doping associated with the drain junction. The memory cell also includes a write line coupled to the control gate, a source line coupled to the source junction of the transistor, and a bit line coupled to the drain junction of the transistor. The control gate could represent a second transistor, where the gates of the transistors are coupled together to form a floating gate. The memory cell could be programmed to store a single-bit value or a multiple-bit value, such as by storing the appropriate charge on the floating gate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Jiankang Bu
  • Patent number: 8273608
    Abstract: A copper-compatible fuse target is fabricated by forming a target structure at the same time that a trace structure is formed on a passivation layer, followed by the formation of an overlying non-conductive structure. After the overlying non-conductive structure has been formed, a passivation opening is formed in the non-conductive structure to expose the passivation layer and the side wall of the target structure.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Abdalla Aly Naem
  • Patent number: 8275339
    Abstract: A fixed point finite impulse response (FIR) filter comprising: 1) an input stage for receiving an input signal as a sequence of input samples comprising: i) delay elements connected in series for receiving and shifting N sequential input samples; ii) multipliers, each multiplier receiving a selected one of the N sequential input samples from the delay elements and multiplying the selected input sample by a corresponding coefficient to produce an intermediate product; and iii) a summer for receiving and adding N intermediate products from the multipliers to produce an output sum signal comprising a sequence of output sum samples; and 2) an output stage for truncating k least significant bits (LSBs) from each of the output sum samples, wherein k is a variable number.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Tao Zhang
  • Patent number: 8274129
    Abstract: A method includes forming a transistor device on a first side of a semiconductor-on-insulator structure. The semiconductor-on-insulator structure includes a substrate, a dielectric layer, and a buried layer between the substrate and the dielectric layer. The method also includes forming a conductive plug through the semiconductor-on-insulator structure. The conductive plug is in electrical connection with the transistor device. The method further includes forming a field plate on a second side of the semiconductor-on-insulator structure, where the field plate is in electrical connection with the conductive plug. The transistor device could have a breakdown voltage of at least 600V, and the field plate could extend along at least 40% of a length of the transistor device.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventors: William French, Peter Smeys, Peter J. Hopper, Peter Johnson
  • Patent number: 8275341
    Abstract: A fixed point finite impulse response (FIR) filter comprising: 1) an input stage for receiving an input signal as a sequence of input samples comprising: i) delay elements connected in series for receiving and shifting N sequential input samples; ii) multipliers, each multiplier receiving a selected one of the N sequential input samples from the delay elements and multiplying the selected input sample by a corresponding coefficient to produce an intermediate product; and iii) a summer for receiving and adding N intermediate products from the multipliers to produce an output sum signal comprising a sequence of output sum samples; and 2) an output stage for truncating k least significant bits (LSBs) from each of the output sum samples, wherein k is a variable number.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Tao Zhang
  • Patent number: 8275340
    Abstract: A fixed point finite impulse response (FIR) filter comprising: 1) an input stage for receiving an input signal as a sequence of input samples comprising: i) delay elements connected in series for receiving and shifting N sequential input samples; ii) multipliers, each multiplier receiving a selected one of the N sequential input samples from the delay elements and multiplying the selected input sample by a corresponding coefficient to produce an intermediate product; and iii) a summer for receiving and adding N intermediate products from the multipliers to produce an output sum signal comprising a sequence of output sum samples; and 2) an output stage for truncating k least significant bits (LSBs) from each of the output sum samples, wherein k is a variable number.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 25, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Tao Zhang
  • Patent number: 8269558
    Abstract: A power supply controller controls the power supply voltage provided to a multi-gain step RF power amplifier to increase the efficiency of the RF power amplifier when the different gains of the RF power amplifier are selected and, thereby, reduce the power consumed by the multi-gain step RF power amplifier.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: September 18, 2012
    Assignee: National Semiconductor Corporation
    Inventors: William Otis Keese, Bhaskar Ramachandran, Jane Xin-LeBlanc
  • Patent number: 8267303
    Abstract: Methods and systems are described for enabling the efficient fabrication of wedge-bonding of integrated circuit systems and electronic systems.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: September 18, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Ken Pham
  • Patent number: 8270463
    Abstract: System and method for adaptive signal equalizing in which overlapping data signal equalization paths provide cumulative data signal equalization to provide multiple equalized data signals having different available amounts of equalization. Signal slicing circuitry slices the equalized data signals to provide multiple sliced data signals, from which the sliced data signal selected as an output data signal is dependent upon the data rate of the incoming data signal.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: September 18, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Amit Rane, Nicolas Nodenot, Yongseon Koh, Laurence Lewicki, Benjamin Buchanan
  • Publication number: 20120228480
    Abstract: An optically-controlled shunt (OCS) circuit includes a switch and a light sampler. The light sampler is coupled to the switch and is configured to sample light at a photovoltaic (PV) cell corresponding to the OCS circuit and to turn on the switch when the sampled light comprises insufficient light for the PV cell. The light sampler may also be configured to turn off the switch when the sampled light comprises sufficient light for the PV cell. The light sampler may further be configured to partially turn on the switch when the sampled light comprises adequate light for the PV cell and to turn off the switch when the sampled light comprises full light for the PV cell. The switch could include a transistor, and the light sampler could include a photodiode.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Reda R. Razouk, Peter J. Hopper
  • Publication number: 20120223317
    Abstract: A semiconductor device includes a first layer and a second layer over the first layer. The first and second layers are configured to form an electron gas layer at an interface of the first and second layers. The semiconductor device also includes an Ohmic contact and multiple conductive vias through the second layer. The conductive vias are configured to electrically couple the Ohmic contact to the electron gas layer. The conductive vias could have substantially vertical sidewalls or substantially sloped sidewalls, or the conductive vias could form a nano-textured surface on the Ohmic contact. The first layer could include Group III-nitride nucleation, buffer, and channel layers, and the second layer could include a Group III-nitride barrier layer.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 6, 2012
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Sandeep R. Bahl, Richard W. Foote, JR.
  • Patent number: 8258026
    Abstract: An insulated-gate field-effect transistor (220U) is provided with an empty-well region for achieving high performance. The concentration of the body dopant reaches a maximum at a subsurface location no more than 10 times deeper below the upper semiconductor surface than the depth of one of a pair of source/drain zones (262 and 264), decreases by at least a factor of 10 in moving from the subsurface location along a selected vertical line (136U) through that source/drain zone to the upper semiconductor surface, and has a logarithm that decreases substantially monotonically and substantially inflectionlessly in moving from the subsurface location along the vertical line to that source/drain zone. Each source/drain zone has a main portion (262M or 264M) and a more lightly doped lateral extension (262E or 264E). Alternatively or additionally, a more heavily doped pocket portion (280) of the body material extends along one of the source/drain zones.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: September 4, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Constantin Bulucea
  • Publication number: 20120217614
    Abstract: In one aspect, the present invention relates generally to integrated circuit (IC) packages and more specific to some embodiments of IC power convertor technologies. In particular, IC packages that have a high degree of scalability to handle high voltage or current levels, good heat dissipation properties, flexible adaptability to generate packages operable at a wide range of current levels and having a wide range of power adaptability, lends itself to rapid inexpensive prototyping, the ability to adapt various substrates and IC devices to one another without extensive retooling or custom designing of components, as well as other advantages.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Lajos Burgyan, Marc Davis-Marsh
  • Publication number: 20120217946
    Abstract: Mode control circuitry is disclosed for use in a buck switching voltage regulator capable of operating in a pulse width modulation (PWM) mode and a pulse frequency modulation (PFM) mode, with the regulator including an inductor having first and second opposite inductor terminals, a first transistor switch connected between the first inductor terminal and a power input terminal and a second transistor switch connected between the first inductor terminal and a circuit common. Current sensing circuitry is provided to sense inductor current through the second switching transistor when the second switching transistor is switched to an ON state and to produce a current sense signal which is integrated over time starting when the second switching transistor is switched to an ON state and to produce a sense signal. The mode switching circuitry switches between the PWM and PFM modes in response to the sense signal.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: National Semiconductor Corporation
    Inventor: Shu-Ing Ju
  • Patent number: 8253208
    Abstract: A gate dielectric layer (500, 566, or 700) of an insulated-gate field-effect transistor (110, 114, or 122) contains nitrogen having a vertical concentration profile specially tailored to prevent boron in the overlying gate electrode (502, 568, or 702) from significantly penetrating through the gate dielectric layer into the underlying channel zone (484, 554, or 684) while simultaneously avoiding the movement of nitrogen from the gate dielectric layer into the underlying semiconductor body. Damage which could otherwise result from undesired boron in the channel zone and from undesired nitrogen in the semiconductor body is substantially avoided.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 28, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Prasad Chaparala, D. Courtney Parker
  • Patent number: 8248885
    Abstract: Multi-channel receiver circuitry for a sub-beam forming receiver of an ultrasound system in which digital filtering, down-sampling and successive data storage circuitry impose programmable fine and coarse time delays on received digital data signals.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 21, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Wei Ma, Zhenyong Zhang, Shougang Wang, Masood Yousefi, Ahmad Bahai
  • Patent number: 8247862
    Abstract: A method is provided for enhancing charge storage in an E2PROM cell structure that includes a read transistor having spaced apart source an drain diffusion regions formed in a semiconductor substrate to define a substrate channel region therebetween, a conductive charge storage element formed over the substrate channel region and separated therefrom by gate dielectric material, a conductive control gate that is separated from the charge storage element by intervening dielectric material, and a conductive heating element disposed in proximity to the charge storage element. The method comprises performing a programming operation that causes charge to be placed on the charge storage element and, during the programming operation, heating the heating element to a temperature such that heat is provided to the charge storage element.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 21, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jeff A Babcock, Yuri Mirgorodski, Natalia Lavrovskaya, Saurabh Desai
  • Patent number: 8241975
    Abstract: A system and method is disclosed for providing a low voltage high density multi-bit storage flash memory. A dual bit memory cell of the invention comprises a substrate having a common source, a first drain and first channel, and a second drain and a second channel. A common control gate is located above the source. A first floating gate and a second floating gate are located on opposite sides of the control gate. Each floating gate is formed with a sharp tip adjacent to the control gate and an upper curved surface that follows a contour of the surface of the control gate. The sharp tips of the floating gates efficiently discharge electrons into the control gate when the memory cell is erased. The curved surfaces increase capacitor coupling between the control gate and the floating gates.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 14, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jiankang Bu, Lee James Jacobson, Andre Paul Labonte
  • Publication number: 20120200296
    Abstract: A method includes receiving a first voltage from a first node associated with a first string of multiple light emitting diodes (LEDs). The method also includes receiving a second voltage from a second node associated with a second string of multiple LEDs. The method further includes identifying whether at least one of the LEDs has a fault using the first and second voltages. Identifying whether at least one of the LEDs has a fault could include comparing a difference between the first and second voltages to a threshold. Identifying whether at least one of the LEDs has a fault could also include determining whether a difference between the first and second voltages falls within a voltage range defined by higher and lower voltage limits.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 9, 2012
    Applicants: NATIONAL SEMICONDUCTOR CORPORATION, Texas Instruments Incorporated
    Inventor: Jean-Jacques M. Avenel