Patents Assigned to National University Corporation Shizuoka University
  • Publication number: 20110198534
    Abstract: A urea compound of the present invention is represented by general formula (1) shown below. [Each of X1, X2 and X3 independently represents a hydrogen atom, an alkyl group or an aryl group. The aryl group may have one or more functional groups selected from the group consisting of halogen groups, alkyl groups and alkoxy groups.
    Type: Application
    Filed: September 15, 2009
    Publication date: August 18, 2011
    Applicants: National University Corporation Shizuoka University, Nissan Chemical Industries, Ltd.
    Inventor: Masamichi Yamanaka
  • Publication number: 20110171378
    Abstract: A method for producing covered particles, comprising: a mixing step of mixing a fluid containing particles comprising at least one type of substance selected from among metals, metal oxides and ceramics, a silsesquioxane having a functional group with an affinity for carbon dioxide, and supercritical carbon dioxide; and a covering step of reducing pressure of the fluid to gasify the supercritical carbon dioxide, while adhering the silsesquioxane onto the particles, and thereby obtaining covered particles comprising the particles and silsesquioxane covering the particles.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicants: TDK Corporation, National University Corporation Shizuoka University
    Inventors: Raitaro Masaoka, Takashi Ota, Hisayuki Abe, Takeshi Sako, Chang Yi Kong, Idzumi Okajima, Takuya Murai
  • Patent number: 7910964
    Abstract: A part of a semiconductor layer directly under a light-receiving gate electrode functions as a charge generation region, and electrons generated in the charge generation region are injected into a part of a surface buried region directly above the charge generation region. The surface buried region directly under a first transfer gate electrode functions as a first transfer channel, and the surface buried region directly under a second transfer gate electrode functions as a second transfer channel. Signal charges are alternately transferred to an n-type first floating drain region and a second floating drain region through the first and second floating transfer channels.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: March 22, 2011
    Assignees: National University Corporation Shizuoka University, Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Mitsuru Homma
  • Patent number: 7907808
    Abstract: A self-written branched optical waveguide is formed. A laser beam 2 from a laser source (not shown) is focused with a lens 3 onto the face of incidence 10 of an optical fiber 1. The laser beam of an LP11 mode was emitted from the face of emergence 11, and “bimodal” light intensity peaks were arranged in the horizontal direction (1.A). A slide glass 4 coated with a photocurable resin gel 5 was placed horizontally (1.B). A single linear cured material 61 was formed as the LP11-mode laser beam was emitted from the face of emergence 11 of the optical fiber 1 (1.C). A branch portion 62 was then formed at a distance L from the face of emergence 11 of the optical fiber 1, which was followed by the growth of two cylindrical cured materials 63a and 63b. The two cylindrical cured materials 63a and 63b were linear branches, and formed an angle of about four degrees. An optical waveguide 60 thus formed was composed of cured materials 61, 62, 63a, and 63b (1.D).
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 15, 2011
    Assignees: Kabushiki Kaisha Totoya Chuo Kenkyusho, National University Corporation Shizuoka University Faculity of Engineering
    Inventors: Manabu Kagami, Tatsuya Yamashita, Masatoshi Yonemura, Naomichi Okamoto, Masahiro Tomiki
  • Patent number: 7893859
    Abstract: A charge corresponding to an analog signal Vi is accumulated in first and second capacitors 25, 27, respectively. A digital signal VDIGN having a digital value (D1, D0, for example) corresponding to the analog signal Vi is generated. By connecting the second capacitor 27 between an output 21c and an inversion input 21a of an operational amplifier circuit 21 and supplying a first capacitor end 25a with an analog signal VD/A corresponding to the digital signal VDIGN, a first conversion value VOUT1 is generated in the output 21c of the operational amplifier circuit 21. By connecting the first and third capacitors 25, 33 between the output 21c and inversion input 21a of the operational amplifier circuit 21 and supplying a second capacitor end 27a with the analog signal VD/A, a second conversion value VOUT2 is generated in the output 21c of the operational amplifier circuit 21.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: February 22, 2011
    Assignee: National University Corporation Shizuoka University
    Inventor: Shoji Kawahito
  • Patent number: 7889253
    Abstract: The present invention relates to a CMOS image sensor having a wide dynamic range, which permits favorable imaging even in cases where a bright portion and a dark portion exist simultaneously. The dynamic range can be widened by preventing the saturation of optical charge at a high illuminance by removing low illuminance signals due to long-time accumulation, intermediate illuminance signals due to short-time accumulation, and high illuminance signals due to ultra-short time accumulation from pixel portions of the image sensor. Further, adaptive control of the dynamic range can also be performed by dynamically changing the wide dynamic range imaging conditions that comprise a combination of different accumulation times of each of a plurality of short time accumulation signals.
    Type: Grant
    Filed: May 31, 2004
    Date of Patent: February 15, 2011
    Assignee: National University Corporation Shizuoka University
    Inventor: Shoji Kawahito
  • Patent number: 7889111
    Abstract: A conversion operation B is performed with respect to a sample value R in an A/D conversion stage 101 to generate a conversion result D3, and a sampling operation A is performed with respect to this conversion result D3 in an A/D conversion stage 103. The conversion operation B is performed with respect to a sample value in an A/D conversion stage 105 to generate a conversion result D4, and the sampling operation A is performed with respect to the conversion result D4 in an A/D conversion stage 107. The conversion operation B is performed with respect to a sample value in an A/D conversion stage 107 to generate a conversion result D5, and the sampling operation A is performed with respect to this conversion result D5 in an A/D conversion stage 101. The conversion operation B is performed with respect to a sample value in the A/D conversion stage 103 to generate a conversion result D6, and the sampling operation A is performed with respect to the conversion result D6 in the A/D conversion stage 105.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: February 15, 2011
    Assignee: National University Corporation Shizuoka University
    Inventor: Shoji Kawahito
  • Publication number: 20110008240
    Abstract: A chemical vapor deposition (CVD) device is equipped with a reaction vessel tube and a small vessel substrate in an electric furnace and with a heater and a thermocouple at the periphery thereof. A gas supply portion is connected to one of the reaction vessel tubes, and a pressure adjusting valve and an exhaust portion are connected to the other of the reaction vessel tubes, controlled by a control section such that the exhaust portion vacuum-exhausts the reaction vessel tube interior, the heater sublimates the small vessel substrate interior by rising temperature of catalyst iron chloride, and the gas supply portion bleeds an acetylene gas into the reaction vessel tube. As a result, iron chloride and the acetylene gas vapor-phase-react, a silicon oxide surface layer is formed to form growth nucleus of cabon nanotubes, and carbon nanotubes are grown so as to be oriented vertically.
    Type: Application
    Filed: February 24, 2009
    Publication date: January 13, 2011
    Applicant: National University Corporation Shizuoka University
    Inventors: Yoku Inoue, Morihiro Okada
  • Publication number: 20110003979
    Abstract: The present invention has been created to provide a near infrared high emission rare-earth complex having an excellent light-emitting property in the near infrared region. The near infrared high emission rare-earth complex of the present invention is characterized in that its structure is expressed by the following general formula (1): where Ln(III) represents a trivalent rare-earth ion; n is an integer equal to or greater than three; Xs represent either the same member or different members selected from a hydrogen atom, a deuterium atom, halogen atoms, C1-C20 groups, hydroxyl groups, nitro groups, amino groups, sulfonyl groups, cyano groups, silyl groups, phosphonic groups, diazo groups and mercapto groups; and Z represents a bidentate ligand.
    Type: Application
    Filed: February 26, 2009
    Publication date: January 6, 2011
    Applicants: National University Corporation Nara Institute of Science and Technology, National University Corporation Shizuoka University
    Inventors: Yasuchika Hasegawa, Hideki Kawai, Tsuyoshi Kawai
  • Patent number: 7842978
    Abstract: An n-type region as a charge storage region of a photodiode is buried in a substrate. The interface between silicon and a silicon oxide film is covered with a high concentration p-layer and a lower concentration p-layer is formed only in the portion immediately below a floating electrode for signal extraction. Electrons generated by light are stored in the charge storage region, thereby changing the potential of the portion of the p-layer at the surface of the semiconductor region. The change is transmitted through a thin insulating film to the floating electrode by capacitive coupling and read out by a buffer transistor. Initialization of charges is executed by adding a positive high voltage to the gate electrode of a first transfer transistor such that the electrons stored in the charge storage region are transferred to the n+ region and generation of reset noise is protected.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: November 30, 2010
    Assignee: National University Corporation Shizuoka University
    Inventor: Shoji Kawahito
  • Patent number: 7843029
    Abstract: A semiconductor range-finding element and a solid-state imaging device, which can provide a smaller dark current and a removal of reset noise. With n-type buried charge-generation region, buried charge-transfer regions, buried charge read-out regions buried in a surface of p-type semiconductor layer, an insulating film covering these regions, transfer gate electrodes arranged on the insulating film for transferring the signal charges to the buried charge-transfer regions, read-out gate electrodes arranged on the insulating film for transferring the signal charges to the buried charge read-out regions, after receiving a light pulse by the buried charge-generation region, in the semiconductor layer just under the buried charge-generation region, an optical signal is converted into signal charges, and a distance from a target sample is determined by a distribution ratio of the signal charges accumulated in the buried charge-transfer regions.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 30, 2010
    Assignees: National University Corporation Shizuoka University, Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Takashi Watanabe
  • Publication number: 20100212384
    Abstract: The method for producing functional compost according to the invention includes: inoculating a filamentous fungus with a function, such as the Coprinus curtus GM-21 strain (NITE BP-37) with a plant disease control function, into compost in an bacterial-activity-restricted state which is, for example, at least one state selected from the group consisting of a nutrient-restricted state, a pH-restricted state and a water content-restricted state; and cultivating the filamentous fungus in the compost to allow its selective proliferation. Further, the invention provides functional compost obtained by the above production method, as well as compost for proliferating a filamentous fungus in a bacterial-activity-restricted state.
    Type: Application
    Filed: June 2, 2008
    Publication date: August 26, 2010
    Applicant: NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY
    Inventors: Kiyohiko Nakasaki, Nobuaki Suzuki
  • Patent number: 7781811
    Abstract: To transfer signal charges generated by a semiconductor photoelectric conversion element in opposite directions, the center line of a first transfer gate electrode and that of a second transfer gate electrodes are arranged on the same straight line, and a U-shaped first exhausting gate electrode and a second exhausting gate electrode are arranged to oppose to each other. The first exhausting gate electrode exhausts background charges generated by a background light in the charge generation region, and the second exhausting gate electrode exhausts background charges generated by the background light in the charge generation region. The background charges exhausted by the first exhausting gate electrode are received by a first exhausting drain region and the background charges exhausted by the second exhausting gate electrode are received by a first exhausting drain region.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 24, 2010
    Assignees: National University Corporation Shizuoka University, Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Mitsuru Homma
  • Publication number: 20100200508
    Abstract: The invention provides a heterocycle-substituted aromatic compound represented by the following Formula (I). In Formula (I), one of R2, R3, and R4 is Ry at a meta- or para-position with respect to Rx, R1, R2, R3, R4 and R5 not including Ry each independently representing a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms, or a sulfonate group, where R1, R2, R3, R4 and R5 not including Ry are not hydrogen atoms all together; Rx and Ry each independently represent the following heterocyclic substituent, R6 and R7 in the heterocyclic substituents each independently representing a hydrogen atom or methyl group, and A representing a five-membered or six-membered heterocyclic group containing at least one nitrogen atom.
    Type: Application
    Filed: September 4, 2007
    Publication date: August 12, 2010
    Applicant: NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY
    Inventor: Mitsuru Kondo
  • Patent number: 7766479
    Abstract: A gaze point detecting device 1 detects a gaze point of an object person by projecting a display image displayed by an LCD 8 to outside via a finder 4 and capturing an eye image of the object person by a CCD 11 in response to illumination light irradiated toward outside from the finder 4, and the device comprises an optical system 5 arranged spaced only a focal length apart from a display surface 8a on an optical path of an image displaying optical system between the LCD 8 and the finder 4; the optical system 5 being arranged on an optical path of an imaging optical system between the finder 4 and the CCD 11; a telecentric optical system including a diaphragm 9 arranged spaced only a focal length apart from the optical system 5 on the optical path; and a controller 3 that detects a position of the gaze point of the object person based on the eye image captured by the CCD 11.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 3, 2010
    Assignee: National University Corporation Shizuoka University
    Inventor: Yoshinobu Ebisawa
  • Patent number: 7745061
    Abstract: An electrolyte membrane for a fuel cell includes: a proton conductive material in which hollow inorganic fine particles having through-holes on the surface of the hollow inorganic fine particles, are filled with an electrolyte resin; and a non-proton conductive polymer.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: June 29, 2010
    Assignees: National University Corporation Shizuoka University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuo Fujinami, Takuya Mase, Masayoshi Takami
  • Patent number: 7671391
    Abstract: A lower cost range-finding image sensor based upon measurement of reflection time of light with reduced fabrication processes compared to standard CMOS manufacturing procedures. An oxide film is formed on a silicon substrate, and two photo-gate electrodes for charge-transfer are provided on the oxide film. Floating diffusion layers for taking charges out from a photodetector layer are provided at the ends of the oxide film, and on the outside thereof are provided a gate electrode for resetting and a diffusion layer for providing a reset voltage.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: March 2, 2010
    Assignee: National University Corporation Shizuoka University
    Inventor: Shoji Kawahito
  • Publication number: 20100043509
    Abstract: Disclosed is a soapstock treatment apparatus which can treat a soapstock produced during a plant oil production process within a short period and with a high degree of efficiency. As shown in FIG. 1, the soapstock treatment apparatus includes a reactor 20 configured to oxidatively decompose a soapstock, an electric heating coil 23 configured to heat water in the reactor 20 at 650° C. which is not less than the critical temperature of water, a high-pressure pump 13 configured to pressurize the water in the reactor 20 at 17 Mpa which is less than the critical pressure of water, and a compressor 33 configured to pressurize the water in the reactor 20 at 17 Mpa which is less than the critical pressure of water. Also, an exhaust pipe 41 for discharging a reaction gas generated by the oxidative decomposition treatment and a waste pipe 51 for discharging a solid (inorganic) residue generated by the oxidative decomposition treatment are connected to the reactor 20.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 25, 2010
    Applicants: NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY, J-OIL MILLS, INC.
    Inventors: Takeshi Sako, Idzumi Okajima, Hajime Hori, Masahito Furuki, Ryousuke Shimobayashi
  • Publication number: 20090285532
    Abstract: [Object] A self-written branched optical waveguide is formed. [Solving Means] A laser beam 2 from a laser source (not shown) is focused with a lens 3 onto the face of incidence 10 of an optical fiber 1. The laser beam of an LP11 mode was emitted from the face of emergence 11, and “bimodal” light intensity peaks were arranged in the horizontal direction (1.A). A slide glass 4 coated with a photocurable resin gel 5 was placed horizontally (1.B). A single linear cured material 61 was formed as the LP11-mode laser beam was emitted from the face of emergence 11 of the optical fiber 1 (1.C). A branch portion 62 was then formed at a distance L from the face of emergence 11 of the optical fiber 1, which was followed by the growth of two cylindrical cured materials 63a and 63b. The two cylindrical cured materials 63a and 63b were linear branches, and formed an angle of about four degrees. An optical waveguide 60 thus formed was composed of cured materials 61, 62, 63a, and 63b (1.D).
    Type: Application
    Filed: September 5, 2006
    Publication date: November 19, 2009
    Applicants: Kabushiki Kaisha Toyota Chuo Kenkyusho, National University Corporation Shizuoka University Faculty of Engineering
    Inventors: Manabu Kagami, Tatsuya Yamashita, Masatoshi Yonemura, Naomichi Okamoto, Masahiro Tomiki
  • Publication number: 20090278862
    Abstract: There is disclosed an image display displaying a multicolor image by using image data expressing color components of a first color specification system.
    Type: Application
    Filed: September 12, 2006
    Publication date: November 12, 2009
    Applicant: National University Corporation Shizuoka University
    Inventor: Yoshifumi Shimodaira