Abstract: A non-destructive inspection and testing instrument includes a housing and a first panel with a first type input to be assembled onto the housing and a second panel with a different, second type input to be assembled onto the housing. A first GUI module for the first panel implements a function upon an actuation of the first type input. A second GUI module for the second panel implements the same function upon an actuation of the second type input. A controller is configured to select the first GUI module when the first panel is associated with the instrument and to select the second GUI module when the second panel is associated with the instrument.
Type:
Grant
Filed:
February 1, 2012
Date of Patent:
December 16, 2014
Assignee:
Olympus NDT, Inc.
Inventors:
Paul Joseph DeAngelo, Coleman McCourt Flanagan
Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
Abstract: The invention herein disclosed provides a 2D coil and a method of using the 2D wound EC sensor for reproducing the Eddy Current Testing (ECT) response of a prior art 3D orthogonal sensor. The 3D orthogonal sensor is conventionally wound onto a 3D core, with at least some of the surfaces being un-parallel to the surface be inspected. Using the herein disclosed 2D configuration allows the use of printed circuit board technologies for the manufacturing of these EC sensors. The herein disclosed method and the associated 2D EC sensors are particularly useful for reproducing the EC effect of conventional orthogonal probe arrays.
Abstract: A pulse generation circuit and method includes using digital signals to trigger a first and second varying analog signals and detecting when they reach one or more reference levels. In response to the first and second varying analog signals reaching one or more reference levels, a first and a second digital control signals are produced and provided as input to a pulser producing a voltage excitation pulse having a width and timing defined by the first and second digital control signals.
Abstract: The invention herein disclosed provides a 2D coil and a method of using the 2D wound EC sensor for reproducing the Eddy Current Testing (ECT) response of a prior art 3D orthogonal sensor. The resulting thin-film eddy current array of coils configured to be placed parallel and against the test surface, and a corresponding eddy current circuitry operable to excite and receive eddy current from the array of coils. The array of coils forming at least a first inspection channel and a second inspection channel. The eddy current circuitry is configured and operable in a way that the one of the first pair of driver coils is usable as one of the second pair of driver coils; and one of the first pair of receiver coils is useable as one the second pair of receiver coils.
Abstract: Disclosed is an improved method of sizing a defect using a phased array system with a single probe orientation requiring only a simple one-pass scan. It is an improvement of the ADDT standard which is adapted to phased array systems with fixed probe orientations. Based on pre-configured parameters obtained from C-scans, the method as presently disclosed provides novel analysis on C-scans and more complete information on defects, including the orientation and sizes in length and depth or thickness of the defects. Phased array systems devised with the presently disclosed method can perform such inspection and complete sizing automatically for longitudinal, transverse and oblique defects in one pass of scan.
Abstract: For ultrasonic measurement of pipe seam peaking, optionally with simultaneous ultrasonic wall thickness measurement using ultrasonic probes mounted on sensor holders on a sensor mount, it is proposed to use a sensor mount with sensor holders mounted on movable skids, which are pressed outward by spring elements and bear against the internal pipe surface, and skids having a large skid breadth greater than the seam peak breadth measured in the pipe's circumferential direction in the region of a measured seam peak, and sensor holders equipped with sensors only in a measuring region situated half way between two skid contact surfaces, wherein the measuring region breadth is less or equal to half of the skid breadth such that the stand off deviation of the sensors resulting in the seam peak region remains below a threshold value.
Abstract: A device is disclosed for performing non-destructive inspection and testing (NDT/NDI) of an elongated test object, wherein the inspection system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path.
Abstract: An XRF analysis apparatus includes a housing with a source of penetrating radiation to be directed at a sample and a detector for detecting fluoresced radiation from the sample. A shield is attachable to the housing to protect the user from radiation and a safety interlock is configured to detect whether or not the shield is attached to the housing. A controller is responsive to the safety interlock, and configured to monitor usage of the source of radiation at or above a predetermined power level when the shield is not attached to the housing and provide an output signal when the monitored usage of the source of penetrating radiation at or above the predetermined power level without the shield attached to the housing exceeds one or more predetermined thresholds.
Abstract: Disclosed is a Hall Effect instrument with the capability of compensating for temperature drift consistently, accurately and in real time of operation. The instrument embodies a four-point ohm meter circuit measuring Hall Effect sensor resistance and tracking the effect of temperature on the Hall Effect sensor. The instrument takes into account a relationship between the temperature and a temperature compensation index on a per probe basis, which has exhibited a deterministic difference observed by the present inventor.
Abstract: Disclosed are a method and an NDT/NDI inspection device deploying digital circuitry to conduct detection and compensation of phase and amplitude shift in responding signals. A digital waveform generator, such as a direct digital synthesizer (DDS) is used to generate a digital sine-wave of a specific frequency and amplitude, mimicking the pulser frequency and amplitude. The sine-wave is converted to analog signal through a DAC and transmitted to the transducer. The received analog sine-wave from the transducer is converted back to a digital signal through an ADC. The transmitted and received digital signals are then compared for phase and amplitude differences. A null circuit involving another waveform generating component is employed to compensate the detected phase and amplitude differences. As a result the phase and amplitude differences are effectively eliminated before being further processed and analyzed for defects information.
Abstract: Disclosed is an ultrasonic device optimized with both averaging and dithery pulsing techniques. The averaging technique significantly removes white noise; on the other hand, the dithery pulsing significantly removes acoustic noise, which is otherwise accumulated during conventional averaging processes.
Abstract: A shielded eddy current coil probe is formed on a printed circuit board and comprises a first coil component forming a test coil and a second coil component forming an active shielding coil. The test coil and the active shielding coil are concentrically arranged and the number of coil windings in the active shielding coil and the field direction thereof are configured to limit the induced field or the sensed field in the test object to the footprint area of the test coil on the test object. Multiple sets of test coils with active shielding coils can be provided on the same or different layers of the printed circuit board to realize different driver, receiver and combined driver/receiver coil configurations.
Abstract: A multi-frequency bond-testing system using acoustic probes in conjunction with NDT/NDI inspection instruments. Bond-testing of test objects is carried out at multiple discrete frequencies to produce a single, combined amplitude C-scan. Alternatively, or in combination, the system provides a single, combined phase C-scan to enable proper interpretation of the C-scans. Amplitude and/or phase readings on test objects are normalized at the selected frequencies relative to tests performed on a defect-free object at those frequencies. In this manner, the non-linear behavior of a bond-testing probe over a frequency range chosen for a given inspection is compensated for. The invention enables providing more easily interpretable and sharper images which enable a more reliable and faster reading and identification of defects in the test objects.
Abstract: A touch screen is disclosed which responds to a user's touch for re-drawing, re-scaling, re-translating and re-positioning an impedance plane signal received from non-destructive testing equipment, such as an eddy current sensor. The impedance plane is manipulated by slidingne, two or more fingers simultaneously to an end position to effectuate a complete re-drawing operation of the image.
Type:
Grant
Filed:
July 30, 2012
Date of Patent:
April 15, 2014
Assignee:
Olympus NDT
Inventors:
Jason Habermehl, Benoit Lepage, Tommy Bourgelas
Abstract: Disclosed is a non-destructive testing instrument configured, when the digital signal is saturated during one data acquisition session, to display an indicator flag to warn the operator in order to help the operator to clearly see that a measurement is invalid. It's also configured to abandon and not to display the measurement results to stop any further analysis on them.
Abstract: A non-destructive inspection (NDI) instrument includes a sensor connection system configured to receive test signals from at least two different types of NDI sensors which are configured to obtain test signals from an object being tested. The sensor connection system has sensor-specific connection circuits and at least one common sensor connection circuit. A data acquisition circuitry is coupled to the sensor connection and has sensor-specific data acquisition circuits and at least one common data acquisition circuit. It is further coupled to a common digital data processor which executes sensor-specific processing modules and at least one common processing module. A common display screen and user interface is coupled to the data processor and enables programs including sensor-specific user interface modules and at least one common user interface module. The sensor types preferably include all of or any combination of an ultrasound sensor, an eddy current sensor and acoustic sensor.
Abstract: Disclosed is an ECA probes assembly capable of providing reliable and durable ECA inspections of dovetail slots without the use of an external guiding mechanism. The design combines a novel universal probe manipulator with a probe support suited for a wide range of probe supports which fit a rage of turbine disks. The probe support embodies a rigid yet expandable core, exerting a force pushing the array probe against the inner cavity of the dovetails. The pushing force is strategically located in critical areas of the dovetail leading to array probe to be self-guiding into the dovetail, and to provide optimum performance with consistent and stable lift-off.
Abstract: The invention herein disclosed provides a 2D coil and a method of using the 2D wound EC sensor for reproducing the Eddy Current Testing (ECT) response of a prior art 3D orthogonal sensor. The resulting thin-film eddy current array of coils configured to be placed parallel and against the test surface, and a corresponding eddy current circuitry operable to excite and receive eddy current from the array of coils. The array of coils forming at least a first inspection channel and a second inspection channel. The eddy current circuitry is configured and operable in a way that the one of the first pair of driver coils is usable as one of the second pair of driver coils; and one of the first pair of receiver coils is useable as one the second pair of receiver coils.