Abstract: There is provided an image display device capable of obtaining a renewed screen giving normal feelings by simple LUT (Look Up Table) adjustment even at a time of displaying with multiple gray levels. A screen of the electronic paper section making up the display device is renewed by driving for a period of time corresponding to a plurality of frames according to input gray level data of a renewed screen. The renewed screen is displayed with a coarse gray level during a first displaying period in a renewing period corresponding to a plurality of frames at an output voltage specified by a high-order bit of its gray level data and, thereafter, is displayed with a fine gray level during a second displaying period in the renewing period at an output voltage specified by a low-order bit of its gray level data.
Abstract: A backlight module with a detachable light source unit includes a light guide plate and a light source unit housed in a module case. The light source unit can slide along a lengthwise direction of one end face of the light guide plate. The light source unit is equipped with a U-shaped cover member for holding a plurality of point light sources such as LEDs along a lengthwise direction. The backlight module further includes a coupling member to change a positional relationship between the light guide plate and the light source unit such that a distance between an emitting surface of the LED and an incident plane of the light guide plate during a process of exchanging the light source unit is larger than that between the emitting surface and the incident plane at a time of home position of the light source unit in the module case.
Abstract: Disclosed is a liquid crystal display device that includes a TFT substrate. A plurality of gate lines and a plurality of common lines extend in a first direction on the TFT substrate. Drain lines extend in a second direction substantially perpendicularly to these lines. Bus lines are located outside a display area and are extending parallel to the drain lines. Common line terminals are provided on either side of each block that is constituted by a predetermined number of gate terminals. The common line terminals and the lead lines therefor are formed on the same layer as the drain lines and are connected to the bus lines on the same layer without any contacts being used. Resistance along the routes taken by common lines can be reduced.
Abstract: In a semi-transmissive liquid crystal display device, the thickness of liquid crystal layer in the reflective region can be adjusted by controlling the film thickness of the organic insulating film for reflection and the film thickness of the color layer for reflection. Furthermore, the thickness of liquid crystal layer in the transmissive region can be adjusted by controlling the film thickness of the organic insulating film for transmission and the film thickness of the color layer for transmission. Since the thicknesses of liquid crystal layer in the reflective region and that in the transmissive region can be adjusted, the reflectance in the reflective region and the transmittance in the transmissive region can each be set at the most appropriate values.
Type:
Grant
Filed:
November 2, 2005
Date of Patent:
October 27, 2009
Assignees:
NEC LCD Technologies, Ltd., NEC Corporation
Abstract: A display portion is divided by scan lines and signal lines into sections where pixels are provided. Contact holes each for connecting common wiring and a common electrode together are not formed for all the pixels, but decimated so as to be arranged in zigzags.
Abstract: To provide a hold-type display device having a fine luminance efficiency while suppressing generation of motion blur. A controller according to the invention adjusts a signal outputted to a hold-type image display panel, which includes: a double-speed drive converting part which divides one frame of an inputted video signal to a plurality of sub-frames; a color converting part which converts a video signal of three primary colors including the plurality of sub-frames to a video signal of four or more colors including the three primary colors and a compound color; and a sub-frame converting part which converts, the video signal converted by the color converting part, to a signal having a plurality of different gradations whose average luminance value becomes equivalent to luminance of the video signal converted by the color converting part, and takes each of the plurality of gradations as each of gradations of the plurality of sub-frames.
Abstract: A device includes a chassis and a flexible printed circuit. The flexible printed circuit has a terminal portion which is disposed so as to overlap with a mounted area of a circuit board mounted on a surface of the chassis. The device includes a connection auxiliary member which is disposed on the surface of the chassis at a position close to the terminal portion. The connection auxiliary member includes a fixed portion fixed to the surface of the chassis and a deformed portion connected to the fixed portion. The deformed portion deforms so that a part thereof rises from the surface of the chassis by pushing the deformed portion toward the fixed portion to lift up the terminal portion of the flexible printed circuit from the surface of the chassis.
Abstract: A projection type liquid crystal display unit includes (a) a first frame (13) having a first surface (15) formed with a first opening (13a), (b) a second frame (12) having a second surface formed with a second opening (12a), and (c) a liquid crystal display panel (11) sandwiched between the first and second frames (13, 12) such that an incident light passes through the second opening (12a), the liquid crystal display panel (11) and the first opening (13a) in this order. The first and second frames (13, 12) are both composed of resin, and the first surface (15) of the first frame (13) is roughened.
Abstract: To provide a structure and a manufacturing method which can manufacture, at a low cost and with good yield, a liquid crystal display panel having a lenticular lens and a substrate formed in a unified manner. When forming a lenticular lens onto a mother CF substrate by using a wet etching method, substrates are dipped into an etching solution while being raised up in such a manner that the length direction of slit openings of a mask is aligned with a vertical direction and an area having no mask pattern comes on a bottom side. With this, the residuals generated due to glass impurities can be drained towards the lower side along the lenticular lens shape to be discharged to the flat area, which makes it possible to suppress deterioration in the etching processed shape.
Abstract: An edge-light type backlight unit reduces the color unevenness on the display screen caused by the arrangement of point-shaped light sources (e.g., LEDs) in a point-shaped light source unit comprising a set of point-shaped light sources aligned. The backlight unit includes at least one point-shaped light source unit having point-shaped light sources arranged in a single direction in a predetermined order, the light sources emitting monochromatic light of different colors. The unit further comprises a first optical filter for limiting or controlling transmission of the monochromatic light emitted from one of the light sources disposed at one end of the light source unit, and a second optical filter for limiting or controlling transmission of the monochromatic light emitted from another of the light sources disposed at the other end thereof. The first and second filters are selectively formed on a first or second light guide plate or a diffusing plate.
Abstract: In an in-plane switching active matrix LCD apparatus wherein a liquid crystal layer is sealed between a pair of transparent substrates and pectinate pixel electrodes and common electrodes are formed on the transparent substrates, a transparent continuous solid electrode that evenly covers the pixel is provided via a transparent insulating film to the bottom layers of the pixel electrodes and common electrodes, and this transparent continuous solid electrode is in an electrically floating state. Transmissivity can thereby be improved with a simple configuration.
Abstract: In a liquid crystal display device using LEDs emitting a plurality of colors as the light sources, diffusion materials are dispersed in a light guide plate. The light guide plate is used to guide and mix the plurality of colors with one another. The diffusion materials are made of a material having optical characteristics, such as a refractive index, different from those of a base material of the light guide plate.
Abstract: A LCD unit includes a reflective area and a transmissive area in each pixel, which are driven by respective drive electrode assemblies. A first substrate and a second substrate that sandwich therebetween a LC layer include respective shied films in the boundary area between the reflective area and the transmissive area.
Type:
Application
Filed:
March 16, 2009
Publication date:
September 24, 2009
Applicant:
NEC LCD Technologies, Ltd.
Inventors:
Hiroshi Nagai, Michiaki Sakamoto, Kenichirou Naka, Kenichi Mori
Abstract: A reflector to be used in a liquid crystal display for reflecting an external light to display images therewith, including an organic film, and a reflective film formed covering the organic film therewith. The organic film has first raised and recessed portions at a surface thereof, and second raised and recessed portions formed at a surface of the first raised and recessed portions. The first raised and recessed portions include raised portions and recessed portions at least one of which is arcuate in cross-section, and the second raised and recessed portions are smaller in size than the first raised and recessed portions. The reflective film is shaped reflecting the first and second raised and recessed portions.
Abstract: An optical unit, includes a light conductive plate having a first surface and a second surface, at least one optical sheet on the first surface of the light conductive plate, and a light reflective sheet extending over the entire second surface of the light conductive plate and fastened on a portion of a first surface of the optical sheet adjacent the periphery thereof to fasten the light conductive plate, the optical sheet, and the light reflective sheet as an optical unit, and to define a light discharge region on the first surface of the optical sheet and the first surface of the light conductive plate.
Abstract: A multi-domain alignment liquid crystal display device in which liquid crystal molecules are aligned through a simple process and panel gap is maintained in stable fashion includes a first plate having a thin-film transistor provided at each point of intersection of a scanning line and signal line, a pixel electrode connected to the thin-film transistor and a first orientation layer formed on the pixel electrode and defining a curved surface, and a second plate having RGB color layers, an counterelectrode provided so as to oppose the pixel electrode, and a second orientation layer. A columnar spacer for regulating the panel gap is provided between the two opposing plates, and liquid crystal is sandwiched between the two plates and subjected to multi-domain alignment by the first orientation layer having the curved surface and the columnar spacer.
Abstract: The present invention is configured such that a touch panel has a dot spacer that is disposed on an inner transparent conductive film and that is disposed on a display surface of a liquid crystal display panel via an air layer. An another dot spacer is disposed on a surface of touch panel opposite to the display surface of the liquid crystal display panel at a position which does not overlap with the dot spacer within a predetermined view angle range on the display surface.
Abstract: Color non-uniformity due to LED light sources of a liquid crystal display (LCD) device is improved. A light quantity control film is arranged between an LED source and the entrance surface of a mixing light guide plate. This light quantity control film is arranged in the part which reduces the quantity of light of the LED with the strongest light quantity among a plurality of same colors.
Abstract: A liquid crystal display is fabricated which has bus wires disposed in a grid shape, switching elements coupled to the bus wires, and pixel electrodes which are disposed on an interlayer insulating film formed by coating and which are coupled with the switching elements. In fabricating the liquid crystal display, when a transparent conductive film is formed on the interlayer insulating film which is formed by coating, the temperature of the substrate is controlled to become 100° C.-170° C. In another embodiment, when the transparent conductive film is formed on the interlayer insulating film in a non-heated condition, an oxygen flow rate ratio is set to 1% or lower, and annealing is performed after forming the film. Thereby, when etching the ITO film on the interlayer insulating film, etching residue is not produced. Further, contact resistance between the ITO film and the lower layer metal can be uniformly decreased, and display defects can be obviated.
Abstract: The present invention aims to provide a liquid crystal display device capable of realizing a wide view angle. A liquid crystal display device includes a liquid crystal film in which the liquid crystal molecules having positive dielectric anisotropy are diagonal oriented or hybrid oriented and a uniaxial film are arranged between the liquid crystal layer and at least one polarization plate, the orientation direction of the liquid crystal layer and the liquid crystal film are substantially the same, and the tilt direction of the liquid crystal molecules on the liquid crystal layer side of the liquid crystal film and the tilt direction of the liquid crystal molecules on the liquid crystal film side of the liquid crystal layer are substantially the same.