Abstract: A mode-selecting apparatus for selecting one of a first mode in which images are displayed on a display unit in accordance with a vertical synchronization control signal and a horizontal synchronization control signal, and a second mode in which images are displayed on the display unit in accordance with a data-enable signal, includes a first unit which counts a number of input horizontal synchronization control signals in each of frame periods, a second unit which counts a number of input data-enable signals in each of frame periods, and a third unit which selects one of the first and second modes in accordance with both the number of input horizontal synchronization control signals and the number of input data-enable signals.
Abstract: A LCD unit includes a drive unit that drives a LC layer in at least a part of a unit pixel by applying thereto a longitudinal electric field. The drive unit drives the at least a part of the unit pixel in an image period by applying thereto an image voltage corresponding to an image, and in a preliminary period preceding to the image period by applying a preliminary voltage equal to or higher than a threshold voltage that allows LC molecules in the LC layer to start change of orientation of the LC molecules.
Abstract: Provided is a method of manufacturing an LCD device in which alignment films are formed by a method of printing non-contact alignment films on substrates. Print control patterns are provided between a sealing member and each of display regions. Each of the print control patterns is formed of a highly water-repellent region as well as any one of fine concave structures, fine convex structures and pillar-shaped bodies. The print control patterns control the spreading as liquid of alignment film materials to make the film thickness of each of the alignment film materials uniform.
Abstract: A display device includes a glass substrate having a display area and a peripheral area. A drive circuit component is mounted on the glass substrate by thermocompression bonding on the peripheral area, and a stress absorption region is provided within the glass substrate close to the circuit component so as to absorb stress produced by thermal deformation of the circuit component. A method of manufacturing the display device of the present invention includes a step of forming stress absorption region into the glass substrate so as to absorb the stress caused by thermocompression bonding of the the circuit component.
Abstract: Disclosed is a liquid crystal display apparatus, including: a liquid crystal display panel; a polarizing plate which is processed to be conductive and is attached to a surface of the liquid crystal display panel; and a conductive frame, wherein the polarizing plate includes a projecting area which projects outward from the edge of the liquid crystal display panel, and wherein the conductive frame presses the projecting area of the polarizing plate in order to ground the polarizing plate. A method for grounding a liquid crystal display apparatus is also disclosed.
Abstract: To provide a liquid crystal display device capable of improving a moving picture characteristic at a low cost by achieving high luminance of the liquid crystal display device which performs quasi-impulse drive. In the liquid crystal display device of the present invention, a first switching device constituting each pixel has a control terminal connected to a gate line, another control terminal connected to another gate line, and becomes electrically conductive when one of the control terminals is low level while the other is high level. A second switching device has a control terminal connected to the gate line and a control terminal connected to the other gate line. A pixel capacitance and a storage capacitance are connected to data lines via the first switching device, and connected to a black signal supplying wiring via the second switching device. The black signal supplying wiring is common to all the pixels.
Abstract: Disclosed is a backlight unit which illuminates a display panel from a rear surface thereof, including at least: tubular lamps arranged in parallel to the panel; and a reflecting member which reflects light from the lamps toward the panel, wherein the reflecting member is divided into a first region opposed to an area near an electrode provided in an end portion of the lamp and a second region nearer to a middle area than the first region, the first region having a higher reflectance than the second region. In another backlight unit, a reflecting member is divided, with respect to the arrangement direction of the lamps, into an end lamp near region which is opposed to a lamp arranged in end portion and a middle region which is nearer to a middle area than the end lamp region, the end lamp region having a higher reflectance than the middle region.
Abstract: In order to improve the light transmissivity above the transparent comb-teeth electrodes provided in an in-plane switching mode active matrix liquid crystal display unit, the liquid crystal gaps above the transparent comb-teeth electrodes are made larger than the liquid crystal gaps between the transparent comb-teeth electrodes.
Abstract: A LCD device includes external terminals for metallic interconnects in a peripheral area on which TCPs are mounted. The external terminal includes a first ITO film connected to the metallic interconnect, a second ITO film formed on the first ITO film and a plurality of insulator islands sandwiched between the first ITO film and the second ITO film. The surface of the second ITO film has convex and concave portions whereby electric connection between the terminal of the TCP and the second ITO film is improved.
Abstract: The apparatus for processing a substrate includes a substrate carrier for carrying a substrate, a chemical-applying unit for applying chemical to the substrate, and a gas-applying unit for applying gas atmosphere to the substrate.
Abstract: A layer-stacked wiring made up of a microcrystalline silicon thin film and a metal thin film is provided which is capable of suppressing an excessive silicide formation reaction between the microcrystalline silicon thin film and metal thin film, thereby preventing peeling of the thin film. In a polycrystalline silicon TFT (Thin Film Transistor) using the layer-stacked wiring, the microcrystalline silicon thin film is so configured that its crystal grains each having a length of the microcrystalline silicon thin film in a direction of a film thickness being 60% or more of a film thickness of the microcrystalline silicon thin film amount to 15% or less of total number of crystal grains or that its crystal grains each having a length of the microcrystalline silicon thin film in a direction of a film thickness being 50% or less of a film thickness of the microcrystalline silicon thin film amount to 85% or more of the total number of crystal grains making up the microcrystalline silicon thin film.
Type:
Application
Filed:
June 24, 2009
Publication date:
December 24, 2009
Applicants:
NEC Corporation, NEC LCD Technologies, Ltd.
Abstract: Disclosed is a liquid crystal display device that includes a TFT substrate. A plurality of gate lines and a plurality of common lines extend in a first direction on the TFT substrate. Drain lines extend in a second direction substantially perpendicularly to these lines. Bus lines are located outside a display area and are extending parallel to the drain lines. Common line terminals are provided on either side of each block that is constituted by a predetermined number of gate terminals. The common line terminals and the lead lines therefor are formed on the same layer as the drain lines and are connected to the bus lines on the same layer without any contacts being used. Resistance along the routes taken by common lines can be reduced.
Abstract: A display unit includes a display panel having a display screen on which images are displayed, and (b) a touch panel covering the display screen therewith and detecting a touch thereto made by a user. The touch panel detects the touch in accordance with touch-panel drive signals input thereto. The display panel displays images in accordance with display-drive signals input thereto. The touch panel is switched between a first condition in which the touch-panel drive signals are input into the touch panel and a second condition in which the touch panel is electrically open.
Abstract: A liquid crystal display panel of the type having reflection electrodes tends to have an image-forming plane undesirably yellowed due to the wavelength dependency of transparency observed in an orientation layer on the reflection electrodes; aluminum-neodymium alloy, which has neodymium content between 5 weight % to 10 weight %, is deposited on an inter-layered insulating layer at the substrate temperature equal to or less than 170 degrees in centigrade for the reflection electrodes so that the surface morphology is represented by average pitches equal to or less than 1 micron; even though the orientation layer has the wavelength dependency of transparency, the reflection electrodes make the optical path in the orientation layer equalized so that the image-forming plane is not yellowed.
Abstract: Off-leak current of a TFT, required for a drive circuit configured with a TFT of a single conductivity type, is realized with simple manufacturing steps. The impurity concentration of a source region and a drain region of a TFT is set between 2*1018 cm?3 and 2*1019 cm?3, whereby off-leak current of the TFT can be sufficiently reduced even in a single gate structure.
Abstract: An active matrix LCD device includes a TFT panel, a counter panel and liquid crystal interposed therebetween. The TFT panel includes a plurality of scanning lines and a plurality of common lines formed in one layer and extending in a row direction, and a plurality of signal lines extending in a column direction. A coupling line for coupling the common lines together is disposed outside the pixel array of the TFT panel, such as in a TCP mounted on the TFT panel and mounting thereon a driver IC for driving the scanning lines.
Abstract: An optical unit includes a light conductive plate having a first surface and a second surface, at least one optical sheet on the first surface of the light conductive plate, and a light reflective sheet extending over an entire second surface of the light conductive plate and fastened on a portion of a first surface of the optical sheet adjacent a periphery thereof to fasten the light conductive plate, the optical sheet, and the light reflective sheet as an optical unit, and to define a light discharge region on the first surface of the optical sheet and the first surface of the light conductive plate.
Abstract: Disclosed is a shift register which includes first transistor connected between a first clock signal terminal and an output terminal, a second transistor with a gate connected to an input terminal and a source connected to a gate of the first transistor, a third transistor with a gate connected to a second clock signal terminal, an inverter with an input connected to the input terminal, a fourth transistor cascode connected to the third transistor with a gate connected to an output of the inverter, a fifth transistor connected between the gate of the first transistor and a power supply terminal, a sixth transistor connected between the fourth transistor and the power supply terminal with a gate connected to the input terminal, and a seventh transistor connected between the output terminal and the power supply terminal, the fifth and seventh transistors having gates connected in common to a connection node of the fourth and the sixth transistors.
Abstract: Disclosed are an exposure mask capable of improving uniformity of a resist film thickness of a half film thickness part and reducing a display defect to increase a manufacturing yield, a method of manufacturing a TFT substrate using the exposure mask and a liquid crystal display comprising the TFT substrate manufactured by the method and having no display defect. The exposure mask includes a light-shielding pattern on a transparent substrate in which a gray-tone area is provided to at least a part of the light-shielding pattern, the gray-tone area having an oblong light-shielding pattern having a width of a submarginal resolution of an exposure apparatus and sandwiched between oblong slit-type transmissive patterns having a width of the submarginal resolution, and a light-shielding rate of the gray-tone area is gradually reduced toward a center of the oblong light-shielding pattern from longitudinal ends thereof.
Abstract: A display device includes an optical member arranged on a display surface side of a display device, wherein the optical member comprises a plurality of concaves on a surface thereof, and wherein each of the concaves is formed with three planes crossing at right angles each other.