Patents Assigned to Neuralink Corp.
  • Publication number: 20230063165
    Abstract: A space-saving configuration for electronics is disclosed in which at least four circuit boards are arranged to form sides of a five-or-greater sided geometric prism that are perpendicular to a common plane. That is, they are stood up on their sides and connected with flex cable to approximate a cylinder. Each circuit board can include one or more sides with electrical components. The circuit boards make up at least half of the five-or-greater sided geometric prism such that the circuit boards wrap at least halfway around. A common connector on one of the circuit boards can be configured to receive power from an underlying motherboard, and flex cables connecting adjacent circuit boards in series distribute power received from the connector to each of the circuit boards in series.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Applicant: Neuralink Corp.
    Inventors: Joshua S. Hess, Mark J. Smith
  • Patent number: 11582072
    Abstract: A three-level encoding transmitter is disclosed in which a transmitter circuit is configured to receive an input data signal including binary data and transmit an encoded data signal. The transmitter circuit can include an inverter circuit configured transmit first and second voltages for each logical level of the binary data. A transmission control circuit can cause the inverter circuit to transmit the voltages or deactivate the inverter circuit based on a first control signal. The transmitter circuit can further include an idle circuit configured to transmit an idle voltage between the first and second voltages when there is no data transmission. The idle circuit may transmit the idle voltage based on a second control signal. The first and second control signals may be configured to only be active when the other is inactive.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: February 14, 2023
    Assignee: NEURALINK CORP.
    Inventors: SungWon Chung, Dongjin Seo
  • Patent number: 11446084
    Abstract: The disclosure provides an apparatus and methods for performing a piotomy on a mammal comprising: performing a craniotomy to remove the skull and expose dura mater; removing the dura mater and arachnoid mater to expose subarachnoid space; and performing a piotomy using a laser to create a hole and expose the cerebral cortex.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: September 20, 2022
    Assignee: Neuralink Corp.
    Inventors: Dalton James Colen, Shivani Shah
  • Patent number: 11444056
    Abstract: Disclosed is a sandwich assembly containing a thin film electrode array for use with high density electrodes. To minimize the volume required by the associated electronics, the electrode array and integrated circuits are sandwiched over a Printed Circuit Board (PCB), which may have other integrated circuits on an opposite side. Among other things, the disclosed apparatus, system, and method improve over previous systems by providing holes and vias that facilitate communication between a custom chip above the PCB and a field-programmable gate array (FPGA) below. The thin film electrode array can be fastened by bucking a pillar of stacked gold or other metal balls to rivet the thin film flex circuit. The system can include a thin film array having embedded wire traces and holes, a PCB having vias aligned with the holes, chips including an analog-to-digital converter (ADC) sandwiching the thin film, and solder connections from the chips through the holes to the vias.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: September 13, 2022
    Assignee: Neuralink Corp.
    Inventors: Supin Chen, Camilo A. Diaz-Botia, Dongjin Seo, Vanessa M. Tolosa
  • Patent number: 11291508
    Abstract: Systems and methods that use computer vision techniques in connection with robotic surgery are discussed. A robotic surgery system may include an implantable device engagement sub-system, a targeting sub-system, and/or an insertion verification sub-system. The system may use computer vision techniques to facilitate implanting a micro-manufactured bio-compatible electrode device in biological tissue (e.g., neurological tissue such as the brain) using robotic assemblies. The system can attach, via robotic manipulation, the electrode to an engagement element of an insertion needle.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 5, 2022
    Assignee: NEURALINK, CORP.
    Inventors: Ian M. O'Hara, Vikash Gilja, Kenny Sharma, Timothy L. Hanson, Timothy J. Gardner
  • Publication number: 20220100688
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Applicant: Neuralink Corp.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Patent number: 11216400
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: January 4, 2022
    Assignee: NEURALINK CORP.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Publication number: 20210346687
    Abstract: A system and method for implanting devices into biological tissue (e.g., brain tissue). The system may include a biocompatible probe, an integrated circuit (IC) chip tethered to the probe, a cartridge comprising a temporary attachment surface by which the probe is removably coupled to the cartridge, a needle to reversibly engage with the probe, a robotic arm to hold the needle, and a microprocessor controller. The microprocessor controller may control the robotic arm and the needle to remove the probe from the temporary attachment surface using the needle, pierce the biological tissue with the needle and the probe, withdraw the needle while leaving the probe within the biological tissue, and detach the IC chip from the cartridge, leaving the IC chip with the biological tissue.
    Type: Application
    Filed: June 28, 2021
    Publication date: November 11, 2021
    Applicant: Neuralink Corp.
    Inventors: Robin E. Young, Philip N. Sabes
  • Patent number: 11107703
    Abstract: Methods of manufacturing a biocompatible, hermetic feedthrough monolithically integrated with a biocompatible ribbon cable are described, as well as the resulting devices themselves. The hermetic feedthrough is created by placing glass over a mold of doped silicon or other material with a higher melting temperature than the glass and heating it to reflow the glass into the mold. The glass is then ground or otherwise removed to reveal a flat surface, and tiny pillars that were in the mold are isolated in the glass to form electrically conductive vias. The flat surface is used to cast a polymer and build up a ribbon cable, photolithographically or otherwise, that is monolithically attached to the vias.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: August 31, 2021
    Assignee: Neuralink Corp.
    Inventors: Vanessa M. Tolosa, Camilo A. Diaz-Botia, Supin Chen, Felix Deku, Yu Niu Huang, Mark J. Hettick, Zachary M. Tedoff
  • Patent number: 11103695
    Abstract: A system and method for implanting devices into biological tissue (e.g., brain tissue). The system may include a biocompatible probe, an integrated circuit (IC) chip tethered to the probe, a cartridge comprising a temporary attachment surface by which the probe is removably coupled to the cartridge and a fastener for removably coupling the IC chip to the cartridge, a needle to reversibly engage with the probe, a robotic arm to hold the needle, a camera, and a microprocessor controller. The microprocessor controller may control the robotic arm and the needle using the to remove the probe from the temporary attachment surface using the needle, pierce the biological tissue with the needle and the probe, withdraw the needle while leaving the probe within the biological tissue; and detach the IC chip from the cartridge, leaving the IC chip with the biological tissue, the IC chip still tethered to the probe.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: August 31, 2021
    Assignee: NEURALINK CORP.
    Inventors: Robin E. Young, Philip N. Sabes
  • Publication number: 20210013051
    Abstract: Methods of manufacturing a biocompatible, hermetic feedthrough monolithically integrated with a biocompatible ribbon cable are described, as well as the resulting devices themselves. The hermetic feedthrough is created by placing glass over a mold of doped silicon or other material with a higher melting temperature than the glass and heating it to reflow the glass into the mold. The glass is then ground or otherwise removed to reveal a flat surface, and tiny pillars that were in the mold are isolated in the glass to form electrically conductive vias. The flat surface is used to cast a polymer and build up a ribbon cable, photolithographically or otherwise, that is monolithically attached to the vias.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Vanessa M. Tolosa, Camilo A. Diaz-Botia, Supin Chen, Felix Deku, Yu Niu Huang, Mark J. Hettick, Zachary M. Tedoff
  • Publication number: 20210011870
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Publication number: 20210007803
    Abstract: The disclosure provides an apparatus and methods for performing a piotomy on a mammal comprising: performing a craniotomy to remove the skull and expose dura mater; removing the dura mater and arachnoid mater to expose subarachnoid space; and performing a piotomy using a laser to create a hole and expose the cerebral cortex.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Dalton James COLEN, Shivani SHAH
  • Publication number: 20210007602
    Abstract: A brain-machine interface (BMI) is described in which many flexible electrodes for implanting within a subject's brain run to a cylindrical sensor device configured to fit inside a burr hole in the cranium. The devices contain sealed electronics that convert analog neural voltages to digital signals, or vice versa, and connects through a serial cable to a subcutaneous relay on the mastoid region (behind the subject's ear) or other suitable location. The relay draws power from and communicates with an externally worn device and distributes the power to the devices. The externally worn device communicates wirelessly or through a tether to a base station computer for data analysis and/or stimulation.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Dongjin Seo, Max J. Hodak, Vanessa M. Tolosa
  • Publication number: 20210008364
    Abstract: Disclosed is a sandwich assembly containing a thin film electrode array for use with high density electrodes. To minimize the volume required by the associated electronics, the electrode array and integrated circuits are sandwiched over a Printed Circuit Board (PCB), which may have other integrated circuits on an opposite side. Among other things, the disclosed apparatus, system, and method improve over previous systems by providing holes and vias that facilitate communication between a custom chip above the PCB and a field-programmable gate array (FPGA) below. The thin film electrode array can be fastened by bucking a pillar of stacked gold or other metal balls to rivet the thin film flex circuit. The system can include a thin film array having embedded wire traces and holes, a PCB having vias aligned with the holes, chips including an analog-to-digital converter (ADC) sandwiching the thin film, and solder connections from the chips through the holes to the vias.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Supin Chen, Camilo A. Diaz-Botia, Dongjin Seo, Vanessa M. Tolosa
  • Publication number: 20210012909
    Abstract: A method is described for real-time detecting and classifying of a characteristic signal, such as a neural spike, and forwarding information for further processing if it meets certain criteria. A system (e.g., an on-chip system implanted in a subject's cranium with limited processing power) receives an electrical biological signal. The system filters the signal to generate a filtered signal and fits the filtered signal to a model. The system identifies a set of fit values based on the model, the set of fit values comprising a plurality of sample amplitude values and a respective plurality of time values. Based on the fit values, the system computes a set of characteristic values. The system compares the characteristic values to a corresponding set of threshold values. Based on the comparison, the system determines whether the received biological signal corresponds to a neural spike and, if a spike is detected, forwards on information.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Thong-Wei Koh, Paul A. MEROLLA, Sonal PINTO, Dongjin SEO
  • Publication number: 20210007808
    Abstract: Disclosed are methods related to guiding robotic surgery using optical coherence tomography (OCT) and computer-readable media and computer systems executing the methods. They may include receiving a series of cross-sectional slices of 3D space obtained from an OCT probe over biological tissue and processing and filtering the series of slices. The processing and filtering may include spatially smoothing the intensity values of each slice, thresholding each slice after it has been blurred, performing a connected-component analysis to identify blobs on the thresholded slice, filtering the blobs, performing edge detection, and invoking a selective median filter. The processing and filtering can be used to construct a depth map from the received series of cross-sectional slices in order to guide a robotic end effector, based on the depth map.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventor: Gilbert I. Montague
  • Patent number: 10824579
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 3, 2020
    Assignee: NEURALINK CORP.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Publication number: 20200086111
    Abstract: A system and method for implanting devices into biological tissue (e.g., brain tissue). The system may include a biocompatible probe, an integrated circuit (IC) chip tethered to the probe, a cartridge comprising a temporary attachment surface by which the probe is removably coupled to the cartridge and a fastener for removably coupling the IC chip to the cartridge, a needle to reversibly engage with the probe, a robotic arm to hold the needle, a camera, and a microprocessor controller. The microprocessor controller may control the robotic arm and the needle using the to remove the probe from the temporary attachment surface using the needle, pierce the biological tissue with the needle and the probe, withdraw the needle while leaving the probe within the biological tissue; and detach the IC chip from the cartridge, leaving the IC chip with the biological tissue, the IC chip still tethered to the probe.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Applicant: Neuralink Corp.
    Inventors: Robin E. Young, Philip N. Sabes
  • Publication number: 20200085375
    Abstract: Disclosed are biocompatible multi-electrode devices capable of being implanted in sensitive tissue, such as the brain, and methods for fabricating such arrays. The disclosed arrays can be implanted in living biological tissue with a single needle insertion. The devices can include linear arrays with contacts along an edge, linear arrays with multiple electrodes per opening in a parylene support layer, multi-thread electrode arrays, tree-like electrode arrays, and combinations thereof. In an embodiment, a compliant electrode apparatus can comprise a biocompatible and bio-implantable compliant dielectric having a top edge defined by a top and a side along a length of the dielectric, insulated electrical traces oriented along the length of the dielectric, and electrode contacts coupled to the traces and situated on the side along the length of the dielectric, wherein an exposed portion of a respective electrode contact protrudes beyond the top edge of the dielectric.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Applicant: Neuralink Corp.
    Inventors: Vanessa M. Tolosa, Zachary M. Tedoff, Timothy L. Hanson, Timothy J. Gardner, Camilo A. Diaz-Botia, Supin Chen