Patents Assigned to Neuralink Corp.
  • Publication number: 20210012909
    Abstract: A method is described for real-time detecting and classifying of a characteristic signal, such as a neural spike, and forwarding information for further processing if it meets certain criteria. A system (e.g., an on-chip system implanted in a subject's cranium with limited processing power) receives an electrical biological signal. The system filters the signal to generate a filtered signal and fits the filtered signal to a model. The system identifies a set of fit values based on the model, the set of fit values comprising a plurality of sample amplitude values and a respective plurality of time values. Based on the fit values, the system computes a set of characteristic values. The system compares the characteristic values to a corresponding set of threshold values. Based on the comparison, the system determines whether the received biological signal corresponds to a neural spike and, if a spike is detected, forwards on information.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Thong-Wei Koh, Paul A. MEROLLA, Sonal PINTO, Dongjin SEO
  • Publication number: 20210007808
    Abstract: Disclosed are methods related to guiding robotic surgery using optical coherence tomography (OCT) and computer-readable media and computer systems executing the methods. They may include receiving a series of cross-sectional slices of 3D space obtained from an OCT probe over biological tissue and processing and filtering the series of slices. The processing and filtering may include spatially smoothing the intensity values of each slice, thresholding each slice after it has been blurred, performing a connected-component analysis to identify blobs on the thresholded slice, filtering the blobs, performing edge detection, and invoking a selective median filter. The processing and filtering can be used to construct a depth map from the received series of cross-sectional slices in order to guide a robotic end effector, based on the depth map.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventor: Gilbert I. Montague
  • Publication number: 20210011870
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Publication number: 20210013051
    Abstract: Methods of manufacturing a biocompatible, hermetic feedthrough monolithically integrated with a biocompatible ribbon cable are described, as well as the resulting devices themselves. The hermetic feedthrough is created by placing glass over a mold of doped silicon or other material with a higher melting temperature than the glass and heating it to reflow the glass into the mold. The glass is then ground or otherwise removed to reveal a flat surface, and tiny pillars that were in the mold are isolated in the glass to form electrically conductive vias. The flat surface is used to cast a polymer and build up a ribbon cable, photolithographically or otherwise, that is monolithically attached to the vias.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Vanessa M. Tolosa, Camilo A. Diaz-Botia, Supin Chen, Felix Deku, Yu Niu Huang, Mark J. Hettick, Zachary M. Tedoff
  • Publication number: 20210007803
    Abstract: The disclosure provides an apparatus and methods for performing a piotomy on a mammal comprising: performing a craniotomy to remove the skull and expose dura mater; removing the dura mater and arachnoid mater to expose subarachnoid space; and performing a piotomy using a laser to create a hole and expose the cerebral cortex.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 14, 2021
    Applicant: Neuralink Corp.
    Inventors: Dalton James COLEN, Shivani SHAH
  • Patent number: 10824579
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 3, 2020
    Assignee: NEURALINK CORP.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio
  • Publication number: 20200085375
    Abstract: Disclosed are biocompatible multi-electrode devices capable of being implanted in sensitive tissue, such as the brain, and methods for fabricating such arrays. The disclosed arrays can be implanted in living biological tissue with a single needle insertion. The devices can include linear arrays with contacts along an edge, linear arrays with multiple electrodes per opening in a parylene support layer, multi-thread electrode arrays, tree-like electrode arrays, and combinations thereof. In an embodiment, a compliant electrode apparatus can comprise a biocompatible and bio-implantable compliant dielectric having a top edge defined by a top and a side along a length of the dielectric, insulated electrical traces oriented along the length of the dielectric, and electrode contacts coupled to the traces and situated on the side along the length of the dielectric, wherein an exposed portion of a respective electrode contact protrudes beyond the top edge of the dielectric.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Applicant: Neuralink Corp.
    Inventors: Vanessa M. Tolosa, Zachary M. Tedoff, Timothy L. Hanson, Timothy J. Gardner, Camilo A. Diaz-Botia, Supin Chen
  • Publication number: 20200085508
    Abstract: Systems and methods that use computer vision techniques in connection with robotic surgery are discussed. A robotic surgery system may include an implantable device engagement sub-system, a targeting sub-system, and/or an insertion verification sub-system. The system may use computer vision techniques to facilitate implanting a micro-manufactured bio-compatible electrode device in biological tissue (e.g., neurological tissue such as the brain) using robotic assemblies. The system can attach, via robotic manipulation, the electrode to an engagement element of an insertion needle.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Applicant: Neuralink Corp.
    Inventors: Ian M. O'Hara, Vikash Gilja, Kenny Sharma, Timothy L. Hanson, Timothy J. Gardner
  • Publication number: 20200086111
    Abstract: A system and method for implanting devices into biological tissue (e.g., brain tissue). The system may include a biocompatible probe, an integrated circuit (IC) chip tethered to the probe, a cartridge comprising a temporary attachment surface by which the probe is removably coupled to the cartridge and a fastener for removably coupling the IC chip to the cartridge, a needle to reversibly engage with the probe, a robotic arm to hold the needle, a camera, and a microprocessor controller. The microprocessor controller may control the robotic arm and the needle using the to remove the probe from the temporary attachment surface using the needle, pierce the biological tissue with the needle and the probe, withdraw the needle while leaving the probe within the biological tissue; and detach the IC chip from the cartridge, leaving the IC chip with the biological tissue, the IC chip still tethered to the probe.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Applicant: Neuralink Corp.
    Inventors: Robin E. Young, Philip N. Sabes
  • Publication number: 20190286592
    Abstract: The embodiments disclosed herein relate to chips used to receive and process neurological events in brain matter as captured by electrodes. Such chips may include an array of amplifiers and electrodes to receive neurological voltage signals, the chip including a config circuitry in communication with the array of amplifiers and a controller, the config circuitry configured to receive program instructions and instruct the amplifiers of a voltage threshold and instruct the controller to pass on signals from only specific rows and columns of amplifiers, the controller in communication with the array of amplifiers, the controller configured to packetize the neurological voltage signals into data packets.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Applicant: Neuralink Corp.
    Inventors: Dongjin Seo, Paul A. Merolla, Manuel Alejandro Monge Osorio