Patents Assigned to New York University
  • Patent number: 11903330
    Abstract: The method of performing braiding operations can include providing a first Josephson junction including first gates. The method can include providing a second Josephson junction including second gates. The method can include tuning the first gates to dispose a first pair of Majorana fermions a first region. The method can include tuning the second gates to dispose a second pair of Majorana fermions in a second region. The method can include tuning the first gates to dispose a first Majorana fermion in the first region and to dispose a second Majorana fermion in a third region. The method can include tuning the second gates to dispose a third Majorana fermion in a fourth region and to dispose a fourth Majorana fermion in the second region.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 13, 2024
    Assignee: NEW YORK UNIVERSITY
    Inventors: Javad Shabani, Matthieu C. Dartiailh
  • Patent number: 11897921
    Abstract: The present invention is directed to a fusion protein comprising a light chain region of a Clostridial neurotoxin and a heavy chain region of a Clostridial neurotoxin, where the light and heavy chain regions are linked by a disulfide bond. The fusion protein also has a single chain antibody positioned upstream of the light chain region, where the single chain antibody possesses antigen-binding activity. Also disclosed are therapeutic agents, treatment methods, propeptide fusions, isolated nucleic acid molecules, expression systems, host cells, and methods of expressing fusion proteins.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 13, 2024
    Assignee: NEW YORK UNIVERSITY
    Inventors: Konstantin Ichtchenko, Edwin Vazquez-Cintron, Philip A. Band, Timothy J. Cardozo
  • Publication number: 20240045966
    Abstract: An aspect of behavior of an embedded system may be determined by (a) determining a baseline behavior of the embedded system from a sequence of patterns in real-time digital measurements extracted from the embedded system; (b) extracting, while the embedded system is operating, real-time digital measurements from the embedded system; (c) extracting features from the real-time digital measurements extracted from the embedded system while the embedded system was operating; and (d) determining the aspect of the behavior of the embedded system by analyzing the extracted features with respect to features of the baseline behavior determined.
    Type: Application
    Filed: July 21, 2023
    Publication date: February 8, 2024
    Applicant: NEW YORK UNIVERSITY
    Inventors: Farshad Khorrami, Ramesh Karri, Prashanth Krishnamurthy
  • Patent number: 11892449
    Abstract: Provided is a multivalent protein that targets interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. The multivalent proteins may also be used to treat subjects having cancer and/or a disease and/or viral infection. Also presented is a multiplex lateral flow test strips for simultaneous detection of the virus and viral antibodies.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: February 6, 2024
    Assignee: New York University
    Inventors: Jin Kim Montclare, Farbod Mahmoudinobar, Kamia Punia, Dustin Robert Britton
  • Patent number: 11891422
    Abstract: This invention relates to macrostructures (and pharmaceutical formulations containing them) that include a parallel coiled-coil structure, wherein the parallel coiled-coil comprises a first coil of Formula I and a second coil of Formula II: T1-f0-g0-a1-b1-c1-d1-e1-f1-g1-a2-b2-c2-d2-e2-f2-g2-a3-b3-c3-d3-e3-T2??(I) T3-g?0-a?1-b?1-c?1-d?1-e?1-f?1-g?1-a?2-b?2-c?2-d?2-e?2-f?2-g?2-a?3-b?3-c?3-d?3-e?3-f?3-T4??(II), as described in the present application. Methods of using these macrostructures are also disclosed.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: February 6, 2024
    Assignee: NEW YORK UNIVERSITY
    Inventors: Paramjit S. Arora, Michael G. Wuo
  • Patent number: 11892390
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: February 6, 2024
    Assignee: New York University
    Inventors: David G. Grier, Fook Chiong Cheong, Ke Xiao
  • Patent number: 11889413
    Abstract: Exemplary apparatus can be provided that can comprise a plurality of antennas; a plurality of conversion systems, each capable of accepting and/or producing one or more digital signals; a circuit (e.g., radio circuit) configured to couple the antennas to the conversion systems; and computer arrangement configurable to selectively control operation of the conversion systems according to one or more predetermined criteria. In some embodiments, the conversion systems can be configured to utilize different sampling rates and/or quantization resolutions and/or to accept and/or produce different numbers of digital signals. Exemplary conversion systems can be enabled/disabled such that one or more can operate simultaneously based on, e.g., subframe timing of received signal, predetermined schedule, power or energy of received signals, availability of reference signals, channel coherence time, and apparatus energy consumption.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 30, 2024
    Assignee: NEW YORK UNIVERSITY
    Inventors: Sundeep Rangan, Theodore S. Rappaport, Dennis Shasha
  • Patent number: 11886660
    Abstract: A sensor having a set of plates, each having a sensing element, of a grid of wires disposed on a base, and a top surface layer that is disposed atop the set of plates, so that force imparted from above onto the top surface layer is transmitted to the plates and thence to the grid of wires. The sensor includes a computer in communication with the grid which causes prompting signals to be sent to the grid and reconstructs a continuous position of force on the surface from interpolation based on data signals received from the grid. A method for sensing.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: January 30, 2024
    Assignees: New York University, Tactonic Technologies, LLC
    Inventors: Kenneth Perlin, Charles Hendee, Alex Grau, Gerald Seidman
  • Patent number: 11858968
    Abstract: Yeast having modified chromosomes are provided. The chromosomes are modified such that at least one of yeast histones H3, H4, H2A or H2B are fully or partially replaced by their human histone counterparts H3, H4, H2A or H2B, respectively. Histone amino acid substitutions are included. Cell fusions with the yeast having the modified chromosomes and non-yeast cells are provided. Methods for screening test agents using the yeast are also provided. Yeast with a mutated yeast DAD1 gene, the mutated DAD1 gene encoding an E50D mutation in yeast DAD1 protein, are provided, and provide a useful genetic background for making the yeast with partially or fully replaced histone(s).
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: January 2, 2024
    Assignee: New York University
    Inventors: David M. Truong, Jef D. Boeke
  • Publication number: 20230422635
    Abstract: A method of fabricating a superconducting-semiconducting stack includes cleaning a surface of a substrate, the substrate comprising a group IV element; depositing an insulating buffer layer onto the substrate, the insulating buffer layer comprising the group IV element; depositing a p-doped layer onto the insulating buffer layer; depositing a diffusion barrier onto the p-doped layer; and processing the superconducting-semiconducting stack through dopant activation.
    Type: Application
    Filed: January 9, 2023
    Publication date: December 28, 2023
    Applicant: New York University
    Inventors: Javad Shabani, Kasra Sardashti
  • Publication number: 20230393330
    Abstract: A three-dimensional Bragg grating may include a single colloidal crystal that includes a plurality of repeated layers of material having different refractive indexes. A sample cell for producing a volume Bragg grating may include an internal shape that forms at least one capillary cell having a flat surface and rounded edges. A method of producing a three-dimensional Bragg grating may include: suspending insoluble particles in a host fluid to form a suspension; and exposing the suspension to a sustained microgravity environment.
    Type: Application
    Filed: March 30, 2023
    Publication date: December 7, 2023
    Applicants: NanoRacks, LLC, New Jersey Institute of Technology, New York University, Universities Space Research Association
    Inventors: Mary MURPHY, Qian LEI, Boris KHUSID, Andrew D. HOLLINGSWORTH, Paul CHAIKIN, William V. MEYER
  • Patent number: 11827622
    Abstract: The present invention relates to crystalline polymorphs of imidacloprid for effective pest management strategies at lower dosages. The present invention further relates to processes of preparing the crystalline polymorphs, and to methods of controlling pests using the novel crystalline polymorphs.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: November 28, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventors: Xiaolong Zhu, Jingxiang Yang, Chunhua T. Hu, Michael D. Ward, Bart Kahr
  • Patent number: 11819684
    Abstract: In an aspect of the present disclosure, a system and method for controlling uterine contractions is disclosed including receiving data from at least one sensor by a wireless apparatus inserted into the patient's vagina adjacent the cervix. The data includes an indication that a contraction of the uterus is imminent. The method further includes in response to receiving the data, causing a generator circuit of the wireless apparatus to supply electrical energy to an energy applicator of the wireless apparatus that is configured to apply the supplied electrical energy to the uterus of the patient via the cervix of the patient to control contractions of the patient's uterus.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: November 21, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventors: Jeffrey Karsdon, Frederick Naftolin, Vikram Kapila, Ashwin Raj Kumar
  • Patent number: 11815527
    Abstract: Disclosed is a multipurpose scanning microscopy probe comprising a probe holder, a cantilever connected to the probe holder, and a probe tip connected to the cantilever, wherein the probe tip is a three-dimensional geometry, and wherein the probe tip is a 3D printed part. In some embodiments the probe is made from SU8 epoxy-based resin. In some embodiments the probe is made from a combination of SU8 and nanomaterial such as carbon nanotubes. In some embodiments the probe includes cavities and voids. In some embodies the probe includes fluidic features and elements. Scanning microscopy probe methods are also disclosed.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: November 14, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventors: Mohammad A. Qasaimeh, Ayoub Glia
  • Patent number: 11814644
    Abstract: Compositions, methods and kits are provided. The compositions, methods and kits are for assembly of series of DNA segments in yeast using homologous recombination. The assembled DNA segments are maintained episomally. Yeast made using the methods are included, as are methods of using the yeast to express proteins, and for screening test agents that can affect yeast that are modified to include the assembled DNA segments.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: November 14, 2023
    Assignee: New York University
    Inventors: Jef D. Boeke, Leslie A. Mitchell, Neta Agmon
  • Patent number: 11809659
    Abstract: An apparatus for inputting information into a computer includes a 3d sensor that senses 3d information and produces a 3d output. The apparatus includes a 2d sensor that senses 2d information and produces a 2d output The apparatus includes a processing unit which receives the 2d and 3d output and produces a combined output that is a function of the 2d and 3d output. A method for inputting information into a computer. The method includes the steps of producing a 3d output with a 3d sensor that senses 3d information. There is the step of producing a 2d output with a 2d sensor that senses 2d information. There is the step of receiving the 2d and 3d output at a processing unit. There is the step of producing a combined output with the processing unit that is a function of the 2d and 3d output.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: November 7, 2023
    Assignees: New York University, Tatonic Technologies, LLC
    Inventors: Kenneth Perlin, Charles Hendee, Alex Grau, Gerald Seidman
  • Patent number: 11809653
    Abstract: A sensor having a set of grid of bars that are in contact from their bottom at the corners with a set of protrusions that are in contact from above with a plurality of intersections, each having a sensing element, of a grid of wires disposed on a base, and a top surface layer that is disposed atop the grid of bars, so that force imparted from above onto the top surface layer is transmitted to the grid of bars and thence to the protrusions, and thence to the intersections of the grid of wires which are thereby compressed between the base and protrusions; and that the protrusions above thereby focus the imparted force directly onto the intersections. A sensor includes a computer in communication with the grid of wires which causes prompting signals to be sent to the grid of wires and reconstructs a continuous position of force on the surface from interpolation based on data signals received from the grid of wires. A method for sensing.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: November 7, 2023
    Assignees: New York University, Tactonic Technologies, LLC
    Inventors: Kenneth Perlin, Charles Hendee, Alex Grau, Gerald Seidman
  • Patent number: 11795511
    Abstract: The present invention is directed to methods of prognosing relapsed leukemia in a subject. These methods are based on the detection of one or more relapse-specific gene mutations in a patient sample. The present invention further relates to methods of preventing and treating relapse leukemia in a subject based on the determined prognosis of the subject.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: October 24, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventors: William L. Carroll, Julia A. Meyer
  • Publication number: 20230331824
    Abstract: Single-domain antibodies that bind the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) spike protein are disclosed. The single-domain antibodies include binding domains that bind epitopes of the Spike ectodomain inside and outside the receptor binding domain. The single-domain antibodies can be used for multiple purposes including in the research, diagnosis, and prophylactic or therapeutic treatment of COVID-19.
    Type: Application
    Filed: August 20, 2021
    Publication date: October 19, 2023
    Applicants: The Rockefeller University, Seattle Children's Hospital d/b/a Seattle Children's Research Institute, New York University
    Inventors: Brian T. Chait, Michael P. Rout, John Aitchison, Fred David Mast, Jean Paul Olivier, David Fenyo
  • Patent number: 11787854
    Abstract: The present invention relates to methods and compositions for treating, preventing, and diagnosing Alzheimer's Disease or other tauopathies in a subject by administering an immunogenic tau peptide or an antibody recognizing the immunogenic tau epitope under conditions effective to treat, prevent, or diagnose Alzheimer's Disease or other tauopathies. Also disclosed are methods of promoting clearance of aggregates from the brain of the subject and of slowing progression of tau-pathology related behavioral phenotype in a subject.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: October 17, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventor: Einar M. Sigurdsson