Abstract: The utility model discloses a motor stator assembly, a motor and an electric vehicle having the motor. The motor stator assembly comprises a stator iron core and at least two sets of symmetrical three-phase windings, which are arranged to wind the stator iron core respectively, wherein phase differences among three phases Ui, Vi and Wi of each set of the three-phase windings are a 120° electrical angle, and i is the set number of the three-phase windings. In order to address the problem of high output power of drive system, the motor stator assembly uses two sets of three-phase windings having a symmetrical spatial arrangement, and each set of windings is considered as an independent unit and is controlled via a power device respectively; finally, the output powers are superimposed so that the capacity of the inverter is increased while also avoiding problems of equalized current and over-voltage.
Abstract: Devices and methods are provided for current sampling and processing associated with, for example, an inverter for an electric vehicle to improve the performance of the inverter. By providing initial parameters for the devices and methods as well as providing estimates of some parameters, the devices and methods can reduce a delay in the time required to perform the sampling and processing of the current. Specifically, parameters for the next beat of a cycle are estimated in the previous beat to complete processing of the current faster, which reduces the delay time. This reduction in delay time increases an output bandwidth of the current loop, i.e., a maximum frequency of an alternating current that can be output by the current loop without attenuation, which improves the performance of the inverter.
Abstract: The present application relates to an online detection method for internal short-circuit of power battery, which comprises the following steps: in the process of charging and discharging, when the state of charge of a power battery is greater than a preset first threshold, monitoring and recording the voltage for each cell in the power battery; in accordance with the recorded historical voltages of each cell, determining whether there is a cell with voltage less than a second threshold in the process of charging, and less than a third threshold in the process of discharging, if so, then marking the corresponding cell as an internal short-circuited cell. The present application could accurately determine whether a malfunction of internal circuit of power battery occurs during the operation of a vehicle, so as to guarantee the safety of the vehicle and the people on-board.
Abstract: The invention refers to a battery lock-up device, a new energy vehicle comprising the battery lock-up device, and a method for installing/detaching a power battery. The battery lock-up device comprises: a connection bracket having a first connection hole and a dual limited position structure; a housing structure having a second connection hole; a press plate and a nut, the press plate comprising a head portion and a pillar portion passing through the first connection hole and the second connection hole, the pillar portion being formed with a threaded portion for engaging with the nut and having a distal end adapted to mate with a rotational operation tool; and an anti-rotation locking member which locks the nut against the housing structure.