Patents Assigned to Nippon Steel Materials Co., Ltd.
  • Patent number: 9028625
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 12, 2015
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Patent number: 8961713
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel Materials Co, Ltd.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Publication number: 20140173860
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: NIPPON STEEL MATERIALS CO, LTD.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Patent number: 8299356
    Abstract: A semiconductor-device bonding wire includes a core member formed of an electrically-conductive metal, and a skin layer mainly composed of a face-centered cubic metal different from the core member and formed thereon. An orientation ratio of <111> orientations in crystalline orientations <hkl> in a wire lengthwise direction at a crystal face of a surface of the skin layer is greater than or equal to 50%, and the <111> orientations have an angular difference relative to the wire lengthwise direction, the angular difference being within 15 degrees.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: October 30, 2012
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Keiichi Kimura, Takashi Yamada
  • Publication number: 20120223430
    Abstract: The present invention relates to a solder ball for semiconductor packaging and an electronic member having such solder ball. Specifically there are provided: a solder ball capable of ensuring a sufficient thermal fatigue property even when a diameter thereof is not larger than 250 ?m as observed in recent years; and an electronic member having such solder ball. More specifically, there are provided: a solder ball for semiconductor packaging that is made of a solder alloy containing Sn as a main element, 0.1-2.5% Ag by mass, 0.1-1.5% Cu by mass and at least one of Mg, Al and Zn in a total amount of 0.0001-0.005% by mass, such solder ball having a surface including a noncrystalline phase that has a thickness of 1-50 nm and contains at least one of Mg, Al and Zn, O and Sn, and an electronic member having such solder ball.
    Type: Application
    Filed: August 4, 2011
    Publication date: September 6, 2012
    Applicant: Nippon Steel Materials Co., Ltd.
    Inventors: Shinichi Terashima, Masamoto Tanaka, Katsuichi Kimura
  • Patent number: 8247911
    Abstract: Provided is a bonding structure of a bonding wire and a method for forming the same which can solve problems of conventional technologies in practical application of a multilayer copper wire, improve the formability and bonding characteristic of a ball portion, improve the bonding strength of wedge connection, and have a superior industrial productivity. A bonding wire mainly composed of copper, and a concentrated layer where the concentration of a conductive metal other than copper is high is formed at a ball bonded portion. The concentrated layer is formed in the vicinity of the ball bonded portion or at the interface thereof. An area where the concentration of the conductive metal is 0.05 to 20 mol % has a thickness greater than or equal to 0.1 ?m, and it is preferable that the concentration of the conductive metal in the concentrated layer should be five times as much as the average concentration of the conductive metal at the ball bonded portion other than the concentrated layer.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 21, 2012
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Shinichi Terashima, Keiichi Kimura, Takashi Yamada, Akihito Nishibayashi
  • Publication number: 20120118610
    Abstract: There is provided a bonding wire for semiconductor, capable of ensuring a favorable wedge bondability even when bonded to a palladium-plated lead frame, superior in oxidation resistivity and having a core wire of copper or a copper alloy. This bonding wire comprises: a core wire of copper or a copper alloy; a coating layer containing palladium and having a thickness of 10 to 200 nm; and an alloy layer formed on a surface of the coating layer, such alloy layer containing a noble metal and palladium and having a thickness of 1 to 80 nm. The aforementioned noble metal is either silver or metal, and a concentration of such noble metal in the alloy layer is not less than 10% and not more than 75% by volume.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 17, 2012
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL MATERIALS CO., LTD
    Inventors: Shinichi Terashima, Tomohiro Uno, Takashi Yamada, Daizo Oda
  • Publication number: 20120104613
    Abstract: It is an object of the present invention to provide a copper-based bonding wire whose material cost is low, having excellent ball bondability, reliability in a heat cycle test or reflow test, and storage life, enabling an application to thinning of a wire used for fine pitch connection. The bonding wire includes a core material having copper as a main component and an outer layer which is provided on the core material and contains a metal M and copper, in which the metal M differs from the core material in one or both of components and composition. The outer layer is 0.021 to 0.12 ?m in thickness.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL MATERIALS CO., LTD.
    Inventors: Tomohiro Uno, Keiichi Kimura, Shinichi Terashima, Takashi Yamada, Akihito Nishibayashi
  • Publication number: 20120094121
    Abstract: The present invention is a copper-based bonding wire for use in a semiconductor element. The bonding wire of the present invention can be manufactured with an inexpensive material cost, and has a superior PCT reliability in a high-humidity/temperature environment. Further, the bonding wire of the present invention exhibits: a favorable TCT reliability through a thermal cycle test; a favorable press-bonded ball shape; a favorable wedge bondability; a favorable loop formability, and so on. Specifically, the bonding wire of the present invention is a copper alloy bonding wire for semiconductor manufactured by drawing a copper alloy containing 0.13 to 1.15% by mass of Pd and a remainder comprised of copper and unavoidable impurities.
    Type: Application
    Filed: June 23, 2010
    Publication date: April 19, 2012
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL MATERIALS CO., LTD.
    Inventors: Tomohiro Uno, Shinichi Terashima, Takashi Yamada, Daizo Oda
  • Publication number: 20120038042
    Abstract: A lead-free solder alloy, a solder ball and an electronic member comprising a solder bump which enable the prevention of the occurrence of yellow discoloration on the surface of a solder after soldering, the surface of a solder bump after the formation of the bump in a BGA, and the surface of a solder bump after a burn-in test of a BGA. Specifically disclosed are: a lead-free solder alloy; a solder ball; and an electronic member comprising a solder bump, containing at least one additive element selected from Li, Na, K, Ca, Be, Mg, Sc, Y, lanthanoid series elements, Ti, Zr, Hf, Nb, Ta, Mo, Zn, Al, Ga, In, Si and Mn in the total amount of 1 ppm by mass to 0.1% by mass inclusive, with the remainder being 40% by mass or more of Sn.
    Type: Application
    Filed: April 12, 2010
    Publication date: February 16, 2012
    Applicants: Nippon Micrometal Corporation, Nippon Steel Materials Co., Ltd.
    Inventors: Tsutomu Sasaki, Shinichi Terashima, Masamoto Tanaka, Katsuichi Kimura
  • Patent number: 8104663
    Abstract: The periphery of a mask (3) is formed higher than a region where a ball holding hole (3a) is formed, a work (1) is arranged at a lower section of the ball holding hole (3a) of the mask (3), and the ball holding hole (3a) and an electrode of the work (1) are aligned with each other. A ball (B) is applied on the mask (3), and in such state, vibration is applied to the mask (3) to move the solder ball (B) on the surface of the mask (3) and drop the solder ball (B) into the ball holding hole (3a). The periphery of the mask (3) is permitted to be lower than the ball holding hole (3a), and an excessive portion of the solder ball (B) is recovered from over the mask (3).
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Shinji Ishikawa, Eiji Hashino, Kohei Tatsumi
  • Patent number: 8102061
    Abstract: It is an object of the present invention to provide a copper-based bonding wire whose material cost is low, having excellent ball bondability, reliability in a heat cycle test or reflow test, and storage life, enabling an application to thinning of a wire used for fine pitch connection. The bonding wire includes a core material having copper as a main component and an outer layer which is provided on the core material and contains a metal M and copper, in which the metal M differs from the core material in one or both of components and composition. The outer layer is 0.021 to 0.12 ?m in thickness.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 24, 2012
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Keiichi Kimura, Shinichi Terashima, Takashi Yamada, Akihito Nishibayashi
  • Patent number: 8097960
    Abstract: There is provided a bonding wire which does not cause a leaning failure or the like. A semiconductor mounting bonding wire has a breaking elongation of 7 to 20%, and stress at 1% elongation is greater than or equal to 90% of a tensile strength and is less than or equal to 100% thereof.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 17, 2012
    Assignees: Nippon Steel Materials Co., Ltd, Nippon Micrometal Corporation
    Inventors: Shinichi Terashima, Tomohiro Uno, Kohei Tatsumi, Takashi Yamada, Atsuo Ikeda, Daizo Oda
  • Patent number: 8096858
    Abstract: The invention provides a polishing pad conditioner that enables stabilization of brazing metal melting point, minimization of abrasive grain detachment by uniformizing and stabilizing abrasive grain brazing condition, and enhancement of flatness by minimizing thermal deformation of the metal support. The polishing pad conditioner is fabricated by brazing multiple abrasive grains to the surface of a metal support with brazing metal, wherein the composition of the brazing metal expressed in mass % is such that 70%?Ni+Fe?90% (provided that 0?Fe/(Ni+Fe)?0.4), 1%?Cr?25%, 2%?Si+B?15% (provided that 0?B/(Si+B)?0.8), and 0.1%?P?8%.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Hiroaki Sakamoto, Toshiya Kinoshita
  • Publication number: 20110308371
    Abstract: There are provided a fixed-abrasive grain saw wire with a superior cutting performance and a manufacturing method thereof. Particularly, there are provided a fixed-abrasive grain saw wire with abrasive grains adhered to a metal wire via a Zn-based or Sn-based low-melting-point metal and a high-melting-point metal having a melting point higher than that of the low-melting-point metal, and a manufacturing method thereof.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 22, 2011
    Applicant: NIPPON STEEL MATERIALS CO., LTD.
    Inventors: Mitsuru Morita, Hiroaki Sakamoto, Masamoto Tanaka, Kohei Tatsumi
  • Publication number: 20110256051
    Abstract: A production method comprising the steps of: spraying an aluminum hydroxide powder having a specific surface area measured by a nitrogen adsorption method of 0.3 m2/g or more and 3 m2/g or less; a ratio of an average particle diameter D50, which is a particle diameter at which 50% by weight of particles from the finest particle side are accumulated in a particle diameter distribution measured by a laser diffraction scattering method, to a sphere conversion particle diameter Dbet calculated from a specific surface area, of 10 or less; and the average particle diameter D50 of 2 ?m or more and 100 ?m or less, into flames, and then collecting it in the form of a powder to give a spherical alumina powder having a small specific surface area and a low uranium content, and capable of providing high thermal conductivity to resin compositions.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 20, 2011
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, Nippon Steel Materials Co., Ltd.
    Inventors: Kiyoshi Sawano, Atsuhiko Imai, Takayuki Kashihara, Yusuke Kawamura, Hiroshi Takahashi
  • Patent number: 8038973
    Abstract: The present invention provides a high purity silicon production system and production method suitable for using inexpensive metallurgical grade metal silicon as a material and using the slag refining method to produce high purity silicon with a purity of 6N or more suitable for solar battery applications, in particular, high purity silicon with a boron content of at least not more than 0.3 mass ppm, inexpensively on an industrial scale, that is, a high purity silicon production system and production method using the slag refining method wherein a direct electromagnetic induction heating means having the function of directly heating the molten silicon in the crucible by electromagnetic induction is arranged outside the outside wall surface of the above crucible and the crucible is formed by an oxidation resistant material at least at a region where the molten silicon contacts the crucible inside wall surface at the time of not powering the direct electromagnetic induction heating means.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: October 18, 2011
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Nobuaki Ito, Kensuke Okazawa, Shinji Tokumaru, Masaki Okajima
  • Patent number: 8004094
    Abstract: The present invention provides a semiconductor-device copper-alloy bonding wire which has an inexpensive material cost, ensures a superior ball joining shape, wire joining characteristic, and the like, and a good loop formation characteristic, and a superior mass productivity. The semiconductor-device copper-alloy bonding wire contains at least one of Mg and P in total of 10 to 700 mass ppm, and oxygen within a range from 6 to 30 mass ppm.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 23, 2011
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Keiichi Kimura, Takashi Yamada
  • Patent number: 7951458
    Abstract: A coating solution for forming a flat-surface insulating film, which is a coating solution obtained by dissolving a poly(diorgano)siloxane A having a mass average molecular weight of 900 to 10,000 and a metal alkoxide B in an organic solvent C and further adding water, wherein the molar ratio A/B of the poly(diorgano)siloxane A to 1 mol of the metal alkoxide B is from 0.05 to 1.5, the organic solvent C has a hydroxyl group, the solubility of water in 100 g of the organic solvent C is from 3 to 20 g, and the molar ratio C/A of the organic solvent C to 1 mol of the poly(diorgano)siloxane A is from 0.05 to 100.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 31, 2011
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Toyoshi Ogura, Noriko Yamada, Yuji Kubo
  • Patent number: 7952028
    Abstract: A high-performance bonding wire that is suitable for semiconductor mounting technology, such as stacked chip bonding, thinning, and fine pitch mounting, where wire lean (leaning) at an upright position of a ball and spring failure can be suppressed and loop linearity and loop height stability are excellent. This bonding wire for a semiconductor device includes a core material made of a conductive metal, and a skin layer formed on the core material and containing a metal different from the core material as a main component; wherein a relationship between an average size (a) of crystal grains in the skin layer on a wire surface along a wire circumferential direction and an average size (b) of crystal grains in the core material on a normal cross section, the normal cross section being a cross section normal to a wire axis, satisfies an inequality of a/b?0.7.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: May 31, 2011
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Keiichi Kimura, Takashi Yamada