Patents Assigned to Nissin Electric Co., Ltd.
  • Patent number: 10553395
    Abstract: An ion beam irradiation device is provided and including: a substrate holder that holds a substrate; a rotating mechanism that rotates the substrate holder about a center portion of the substrate being held; a reciprocating mechanism that reciprocates the substrate holder and the rotating mechanism in the moving direction; an ion beam irradiator that irradiates the substrate with an ion beam; and a control device that controls the rotating mechanism and the reciprocating mechanism. The ion beam has a center region where the beam current density is a predetermined value or more in the moving direction, and a peripheral region where the beam current density is less than the predetermined value, a center region size in the direction orthogonal to the moving direction is larger than a substrate size in the direction orthogonal to the moving direction.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: February 4, 2020
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventor: Hiroshi Inami
  • Publication number: 20200027708
    Abstract: The purpose of the present invention is to improve uniformity of film deposition by a plasma-based sputtering device. Provided is a sputtering device 100 for depositing a film on a substrate W through sputtering of targets T by using plasma P, said sputtering device being provided with a vacuum chamber 2 which can be evacuated to a vacuum and into which a gas is to be introduced; a substrate holding part 3 for holding the substrate W inside the vacuum chamber 2; target holding parts 4 for holding the targets T inside the vacuum chamber 2; multiple antennas 5 which are arranged along a surface of the substrate W held by the substrate holding part 3 and generate plasma P; and a reciprocal scanning mechanism 14 for scanning back and forth the substrate holding part 3 along the arrangement direction X of the multiple antennas 5.
    Type: Application
    Filed: March 14, 2018
    Publication date: January 23, 2020
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: SHIGEAKI KISHIDA, Daisuke MATSUO
  • Publication number: 20190373710
    Abstract: The impedance of an antenna is reduced and gaps generated between electrodes constituting a capacitance element and a dielectric body are eliminated. An antenna (3) for generating inductively coupled plasma P includes at least two conductor elements (31), an insulation element (32) that is arranged between the mutually adjacent conductor elements (31) and insulates the conductor elements (31), and a capacitance element (33) that is connected electrically to and in series with the mutually adjacent conductor elements (31). The capacitance element (33) is configured from a first electrode (33A) electrically connected to one of the mutually adjacent conductor elements (21), a second electrode (33B) electrically connected to the other of the mutually adjacent conductor elements (21), and a liquid dielectric body filling the space between the first electrode (33A) and the second electrode (33B).
    Type: Application
    Filed: February 13, 2018
    Publication date: December 5, 2019
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: Yasunori ANDO, Dongwei LI, Kiyoshi KUBOTA
  • Patent number: 10475934
    Abstract: A thin film transistor having a high operation speed with a field effect mobility greater than 20 cm2/Vs and a method for manufacturing the same, and a semiconductor device having the same are provided. A thin film transistor in which a gate electrode, a gate insulating film and an oxide semiconductor film are laminated on a substrate, a source region and a drain region are respectively formed in outer portions of the oxide semiconductor film in the width direction, and a channel region is formed in a region between the source region and the drain region; and a source electrode is connected to the source region, while a drain electrode is connected to the drain region. The gate insulating film contains fluorine; and the ratio of the width W of the channel region to the length L thereof, namely W/L is less than 8.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: November 12, 2019
    Assignees: NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY, NISSIN ELECTRIC CO., LTD.
    Inventors: Yukiharu Uraoka, Haruka Yamazaki, Mami Fujii, Eiji Takahashi
  • Publication number: 20190139741
    Abstract: An ion beam irradiation device is provided and including: a substrate holder that holds a substrate; a rotating mechanism that rotates the substrate holder about a center portion of the substrate being held; a reciprocating mechanism that reciprocates the substrate holder and the rotating mechanism in the moving direction; an ion beam irradiator that irradiates the substrate with an ion beam; and a control device that controls the rotating mechanism and the reciprocating mechanism. The ion beam has a center region where the beam current density is a predetermined value or more in the moving direction, and a peripheral region where the beam current density is less than the predetermined value, a center region size in the direction orthogonal to the moving direction is larger than a substrate size in the direction orthogonal to the moving direction.
    Type: Application
    Filed: April 21, 2017
    Publication date: May 9, 2019
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventor: Hiroshi INAMI
  • Publication number: 20190006525
    Abstract: A thin film transistor having a high operation speed with a field effect mobility greater than 20 cm2/Vs and a method for manufacturing the same, and a semiconductor device having the same are provided. A thin film transistor in which a gate electrode, a gate insulating film and an oxide semiconductor film are laminated on a substrate, a source region and a drain region are respectively formed in outer portions of the oxide semiconductor film in the width direction, and a channel region is formed in a region between the source region and the drain region; and a source electrode is connected to the source region, while a drain electrode is connected to the drain region. The gate insulating film contains fluorine; and the ratio of the width W of the channel region to the length L thereof, namely W/L is less than 8.
    Type: Application
    Filed: December 7, 2016
    Publication date: January 3, 2019
    Applicants: NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY, NISSIN ELECTRIC CO., LTD.
    Inventors: Yukiharu URAOKA, Haruka YAMAZAKI, Mami FUJII, Eiji TAKAHASHI
  • Patent number: 9947550
    Abstract: Provided is a film forming method to minimize decreases in the electrical resistance of an oxide semiconductor film even when a fluorinated silicon nitride film is formed directly on the oxide semiconductor film. The film forming method includes: a surface treatment process in which a substance including an oxide semiconductor film on a substrate is prepared, plasma is generated using a mixed gas of oxygen and hydrogen which contains hydrogen at a rate of 8% or less (not including 0), and plasma is used to treat surface of oxide semiconductor film; a film formation process in which a fluorinated silicon nitride film (a SiN:F film) is subsequently forming on oxide semiconductor film by a plasma CVD method in which plasma is generated using a raw material gas containing silicon tetrafluoride gas and nitrogen gas; and an annealing process in which substrate and film thereon are subsequently heated.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 17, 2018
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventor: Eiji Takahashi
  • Patent number: 9947511
    Abstract: Provided are an antenna, which is disposed in a vacuum chamber for generating an inductively coupled plasma, and a plasma processing device. The antenna and the plasma processing device suppress increase of the impedance even if the antenna is lengthened. An antenna 20 is disposed in a vacuum chamber 2 for generating an inductively coupled plasma 16 in the vacuum chamber 2 by applying a high frequency current. The antenna 20 includes an insulating pipe 22 and a hollow antenna body 24 which is disposed in the insulating pipe 22 and in which cooling water flows. The antenna body 24 has a structure that a plurality of metal pipes 26 are connected in series with a hollow insulator 28 interposed between the adjacent metal pipes 26, and each connecting portion has a sealing function with respect to vacuum and the cooling water.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 17, 2018
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Yasunori Ando, Dongwei Li
  • Patent number: 9897236
    Abstract: Provided is a pipe holding connection structure configured so that the width of the entire structure is reduced and so that the number of parts and the number of assembly work processes are reduced. This pipe holding connection structure is provided with: a housing affixed so as to air-tightly close the opening of a vacuum container; a first pipe having a portion near an end portion thereof extending through both the opening and the housing; and a second pipe having a female thread part engaging with a male thread part located at the end portion. The pipe has a locking part. Fluid is caused to flow through both the pipes. Pieces of packing are provided between the pipe and the housing and between the pipe and an end portion of the pipe, respectively. This pipe holding connection structure can be used for a high-frequency antenna device.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 20, 2018
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Dongwei Li, Yasunori Ando
  • Publication number: 20180033644
    Abstract: Provided is a film forming method to minimize decreases in the electrical resistance of an oxide semiconductor film even when a fluorinated silicon nitride film is formed directly on the oxide semiconductor film. The film forming method includes: a surface treatment process in which a substance including an oxide semiconductor film on a substrate is prepared, plasma is generated using a mixed gas of oxygen and hydrogen which contains hydrogen at a rate of 8% or less (not including 0), and plasma is used to treat surface of oxide semiconductor film; a film formation process in which a fluorinated silicon nitride film (a SiN:F film) is subsequently forming on oxide semiconductor film by a plasma CVD method in which plasma is generated using a raw material gas containing silicon tetrafluoride gas and nitrogen gas; and an annealing process in which substrate and film thereon are subsequently heated.
    Type: Application
    Filed: February 1, 2016
    Publication date: February 1, 2018
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventor: Eiji TAKAHASHI
  • Publication number: 20170370504
    Abstract: Provided is a pipe holding connection structure configured so that the width of the entire structure is reduced and so that the number of parts and the number of assembly work processes are reduced. This pipe holding connection structure is provided with: a housing affixed so as to air-tightly close the opening of a vacuum container; a first pipe having a portion near an end portion thereof extending through both the opening and the housing; and a second pipe having a female thread part engaging with a male thread part located at the end portion. The pipe has a locking part. Fluid is caused to flow through both the pipes. Pieces of packing are provided between the pipe and the housing and between the pipe and an end portion of the pipe, respectively. This pipe holding connection structure can be used for a high-frequency antenna device.
    Type: Application
    Filed: January 22, 2016
    Publication date: December 28, 2017
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: Dongwei LI, Yasunori ANDO
  • Patent number: 9774054
    Abstract: An electricity storage battery is described, including an anode electrolyte solution 32 that contains a zinc redox material and an amine represented by a general formula (1) below: In the general formula (1), n is one of the integers 0 to 4, and each of R1, R2, R3 and R4 independently represents hydrogen, methyl or ethyl.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: September 26, 2017
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Lan Huang, Hiroshige Deguchi, Toshihiro Miyazaki, Shosuke Yamanouchi
  • Patent number: 9680176
    Abstract: A positive electrode electrolyte (22) and a negative electrode electrolyte (32) that are used in this energy storage battery have a pH within the range from 2 to 8 (inclusive). An ion exchange membrane, which is obtained by graft-polymerizing styrenesulfonate to a resin film base material that uses an ethylene-vinyl alcohol copolymer as a matrix, is used as a diaphragm (12) of this energy storage battery.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: June 13, 2017
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Yasuyuki Okumura, Hiroshige Deguchi, Lan Huang, Shosuke Yamanouchi
  • Patent number: 9577283
    Abstract: A redox flow battery is described, mainly including a charge/discharge cell, a cathode electrolyte tank, and an anode electrolyte tank. The inside of the charge/discharge cell is divided into a cathode cell and an anode cell by a diaphragm. A collector plate and a cathode are contained in the cathode cell. An aqueous solution containing a Mn-polyethyleneimine complex is supplied from the cathode electrolyte tank to the cathode through a supply pipe. Thereby, an energy storage battery that has durability sufficient for practical applications in a wide range of fields can be provided.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: February 21, 2017
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Hiroshige Deguchi, Lan Huang, Yuki Uemura, Shosuke Yamanouchi
  • Patent number: 9515345
    Abstract: An electricity storage battery is described, including a cathode electrolyte solution that contains a manganese redox material and an amine represented by a general formula (1) below: In the general formula (1), n is one of the integers 0 to 4, and each of R1, R2, R3 and R4 independently represents hydrogen, methyl or ethyl, with the proviso that at least one of R1, R2, R3 and R4 is methyl when n is 0.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: December 6, 2016
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Lan Huang, Hiroshige Deguchi, Shosuke Yamanouchi
  • Publication number: 20160172522
    Abstract: A multi-junction solar cell is provided and includes: a first solar cell element, having a first band gap and transmitting a part of incident light; a first conductive film, formed on a back surface of the first solar cell element and having light transmissivity and conductivity; a second solar cell element, having a second band gap smaller than the first band gap; a second conductive film, formed on a front surface of the second solar cell element and having light transmissivity and conductivity; and an adhesion layer, joining surfaces of the first and second conductive films, and having light transmissivity and conductivity. When refractive indexes of the first solar cell element, the first conductive film, the second solar cell element, the second conductive film and the adhesion layer are n1, n2, n3, n4 and n5, respectively, relations of n1>n2>n5 and n3>n4>n5 are satisfied.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicants: NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, NISSIN ELECTRIC CO., LTD.
    Inventors: TOSHIYUKI SAMESHIMA, YASUNORI ANDO, SYUNJI TAKASE, YOSHITAKA SETOGUCHI
  • Publication number: 20160141698
    Abstract: A redox flow battery includes a charge/discharge cell (11), a first tank (23) for storing a positive-electrode electrolyte (22), and a second tank (33) for storing a negative-electrode electrolyte (32). The positive-electrode electrolyte (22) contains, for example, an iron redox-based substance and citric acid. The negative-electrode electrolyte (32) contains, for example, a titanium redox substance and citric acid. The amount of dissolved oxygen in the negative-electrode electrolyte (32) in the second tank (33) is no greater than 1.5 mg/L.
    Type: Application
    Filed: June 9, 2014
    Publication date: May 19, 2016
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: Lan HUANG, Hiroshige DEGUCHI, Masaru YAMAUCHI, Shosuke YAMANOUCHI
  • Patent number: 9236488
    Abstract: A thin film transistor is equipped with a silicon substrate, a channel layer, a source electrode and a drain electrode. The channel layer, the source electrode and the drain electrode are arranged on the main surface of the silicon substrate. The channel layer is composed of multiple carbon nanowall thin films, wherein the multiple carbon nanowall thin films are arranged in parallel to each other between the source electrode and the drain electrode, one end of each of the multiple carbon nanowall thin films is in contact with the source electrode, and the other end of each of the multiple carbon nanowall thin films is in contact with the drain electrode. An insulating film and a gate electrode are arranged on the rear surface side of the silicon substrate.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 12, 2016
    Assignees: CHUBU UNIVERSITY EDUCATIONAL FOUNDATION, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, OSAKA UNIVERSITY, NISSIN ELECTRIC CO., LTD.
    Inventors: Toshio Kawahara, Kazumasa Okamoto, Kazuhiko Matsumoto, Risa Utsunomiya, Teruaki Matsuba, Hitoshi Matsumoto
  • Patent number: 9142425
    Abstract: A method for fabricating a thin-film transistor is described. A structure is provided, including a substrate transmitting an excimer laser light, a diffusion prevention film on the substrate, a gate electrode and a gate insulating film on the diffusion prevention film, and an oxide semiconductor layer on the gate insulating film. The structure is irradiated with an excimer laser light from the side of the substrate, so that two outer regions of the oxide semiconductor layer beside the region corresponding to the gate electrode are irradiated by the excimer laser light, with the gate electrode as a mask, to be reduced in resistance and thereby one of the two outer regions forms a source region and the other one forms a drain region. The diffusion prevention film includes a SiN:F film containing fluorine in a SiN film.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: September 22, 2015
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventor: Yasunori Ando
  • Publication number: 20150221779
    Abstract: A thin film transistor is equipped with a silicon substrate, a channel layer, a source electrode and a drain electrode. The channel layer, the source electrode and the drain electrode are arranged on the main surface of the silicon substrate. The channel layer is composed of multiple carbon nanowall thin films, wherein the multiple carbon nanowall thin films are arranged in parallel to each other between the source electrode and the drain electrode, one end of each of the multiple carbon nanowall thin films is in contact with the source electrode, and the other end of each of the multiple carbon nanowall thin films is in contact with the drain electrode. An insulating film and a gate electrode are arranged on the rear surface side of the silicon substrate.
    Type: Application
    Filed: August 23, 2012
    Publication date: August 6, 2015
    Applicants: CHUBU UNIVERSITY EDUCATIONAL FOUNDATION, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, OSAKA UNIVERSITY, NISSIN ELECTRIC CO., LTD.
    Inventors: Toshio Kawahara, Kazumasa Okamoto, Kazuhiko Matsumoto, Risa Utsunomiya, Teruaki Matsuba, Hitoshi Matsumoto