Abstract: A system for synthesizing organic polymers utilizing one or more independent synthesizer elements of similar design configured to interconnect to one another for combined operations. The synthesizer module contains at least two small-cavity pumps in a symmetric valve and tubing arrangement for delivery, blending and/or recirculation of synthesis reagents. The synthesizer module allows it to operate independently to perform synthesis chemistry, or two or more modules can be combined.
Abstract: A wiring circuit board includes a metal support layer, a base insulating layer disposed on one side in a thickness direction of the metal support layer, and a conductive layer disposed on one side in the thickness direction of the base insulating layer, and including a first terminal and a ground lead residual portion electrically connected to the first terminal. The base insulating layer has a through hole penetrating in the thickness direction. The ground lead residual portion has an opening continuous so as to surround the through hole.
Type:
Grant
Filed:
March 31, 2020
Date of Patent:
July 9, 2024
Assignee:
NITTO DENKO CORPORATION
Inventors:
Kenya Takimoto, Naoki Shibata, Hayato Takakura
Abstract: A method of manufacturing a glass resin laminated body includes a step of sticking a glass film on a resin film via an adhesive layer while holding the glass film and the resin film between a first roller that presses against the resin film and a second roller that is disposed opposite to the first roller and that presses against the glass film. A ratio of an elastic modulus P1 of a surface layer of the first roller to an elastic modulus P2 of the resin film P1/P2 satisfies a relation of 3×10?3?P1/P2?1.0.
Type:
Grant
Filed:
March 11, 2020
Date of Patent:
July 9, 2024
Assignee:
NITTO DENKO CORPORATION
Inventors:
Keisuke Sato, Takeshi Murashige, Junichi Inagaki, Atsushi Kishi
Abstract: A lightguide component for illumination devices having an exit surface includes: a lightguide layer having a light-receiving portion to receive light emitted from a light source, a first principal face at the exit surface side, and a second principal face at an opposite side from the first principal face; a light distribution controlling structure having a plurality of internal spaces, each of the plurality of internal spaces including a first slope to direct a portion of light propagating in the lightguide layer toward the exit surface via total internal reflection, and a second slope at an opposite side from the first slope, wherein, when viewed from a normal direction of the first principal face of the lightguide layer, the first slope presents a curved surface that is convex toward the light source; and an anti-reflection layer and/or anti-glare layer disposed at the first principal face side of the lightguide layer.
Abstract: A method for producing a wiring circuit board includes a step of forming an insulating layer on one surface in a thickness direction of a substrate, a step of forming a plurality of wirings on one surface in the thickness direction of the insulating layer, a step of forming an opening portion including the plurality of wirings when projected in the thickness direction in the substrate, a step of forming a resist pattern having an opening portion having a pattern shape along the plurality of wirings on the other surface in the thickness direction of the insulating layer, a step of forming a metal support portion by depositing a metal material on the insulating layer inside the opening portion, and a step of removing the resist pattern.
Abstract: Provided is a masking tape to be used at the time of formation of an electromagnetic wave shield, which is excellent in followability to irregularities, and which is capable of being peeled off from an irregular surface without any adhesive residue. The masking tape for forming an electromagnetic wave shield includes a pressure-sensitive adhesive layer that is increased in modulus of elasticity through active energy ray irradiation to 20 times or more as high as that before the active energy ray irradiation, wherein the pressure-sensitive adhesive layer has a modulus of elasticity after the active energy ray irradiation of 500 MPa or less.
Abstract: A polymer dispersed liquid crystal (PDLC) film achieves a haze (light diffusibility) capable of exhibiting a shielding function, and improved backscattering ratio. The PDLC film according to an embodiment of the present invention includes a first transparent conductive film, a polymer dispersed liquid crystal layer, and a second transparent conductive film in the stated order. The polymer dispersed liquid crystal layer contains a polymer matrix and droplets of a liquid crystal compound dispersed in the polymer matrix. An average particle diameter of the droplets when viewed from a direction perpendicular to a main surface of the PDLC film is from 0.3 ?m to 0.9 ?m. A volume ratio of the droplets in the polymer dispersed liquid crystal layer is from 20% to 70%. The liquid crystal compound has a birefringence of from 0.20 to 0.50. The polymer dispersed liquid crystal layer has a thickness of from 5 ?m to 40 ?m.
Abstract: The present disclosure relates to a plastic optical fiber (POF) core diameter measuring method and a POF core diameter measuring apparatus, and a POF defect detecting method, and a POF defect detecting apparatus used therefor. Light irradiation mechanisms are provided for irradiating a side of a POF with light, with imaging mechanisms provided on the opposite side of the POF from the light irradiation mechanisms; and a data processing mechanism for processing image data on the POF acquired from the imaging mechanisms to calculate the core diameter of the POF. The ratio (D/W) of the shortest distance D to a light emission width W is in the range of 0.9 to 1.3 where W is the light emission width of the light irradiation mechanisms and D is the shortest distance between a light emission position of the light irradiation mechanisms and the side of the POF.
Abstract: An assembly sheet includes a wiring circuit board, a frame, and a reinforcement portion. The wiring circuit board has a support layer, a base insulating layer, and a conductive pattern. The frame supports the wiring circuit board. The reinforcement portion is disposed on the frame and reinforces the frame. The reinforcement portion has a first layer made of a metal and a second layer made of a metal.
Abstract: A plastic optical fiber includes a core and a clad disposed on an outer circumference of the core. The core includes a first resin, and the clad includes a second resin. The first resin has a first glass transition temperature Tg1 of 120° C. or higher. The second resin has a second glass transition temperature Tg2 of 120° C. or higher. When the plastic optical fiber bent once 180 degrees at 25° C. has a curvature radius R and a minimum of the curvature radius R is defined as a curvature radius at which a crack does not occur in a bent portion of the plastic optical fiber, the minimum is 5 mm or less.
Abstract: An optical transmitter includes a TOSA and an LC parallel circuit. The TOSA is configured to convert a first electrical signal into an optical signal. The LC parallel circuit includes an inductor and a capacitor. The inductor and the capacitor are connected in parallel to each other. The LC parallel circuit is connected to the TOSA.
Abstract: Provided is a Low-E glass plate protection method capable of preventing or inhibiting alteration and erosion of Low-E layers. The protection method includes a step of applying a protective sheet to a surface of a Low-E glass plate having a Low-E layer comprising a tin component. Here, the Low-E layer comprises a tin component. The protective sheet has a PSA layer. The PSA layer comprises a phosphorus compound having a P—OR group. Here, R is a hydrogen atom or an organic group.
Type:
Grant
Filed:
June 23, 2020
Date of Patent:
June 25, 2024
Assignee:
NITTO DENKO CORPORATION
Inventors:
Yuta Shimazaki, Kosuke Yonezaki, Hakaru Horiguchi, Kunimasa Mishima
Abstract: The present invention provides an optical laminate including a void-containing layer in which a pressure-sensitive adhesive, an adhesive, and the like barely permeate a void. In order to achieve the object, an optical laminate (10a) or (10b) of the present invention includes a void-containing layer (12) and a low moisture permeable layer (13) formed on the void-containing layer (12), wherein the low moisture permeable layer (13) includes at least one element selected from the group consisting of metal, metal oxide, silicon, silicon oxide and an organic-inorganic hybrid material, and a moisture vapor transmission rate of the low moisture permeable layer (13) measured by a dish method defined in JIS Z 0208-1976 is 35 g/m2·day or less.
Abstract: A present switch device includes a glass layer, and a switch section situated on a back surface side of the glass layer. A thickness of the glass layer is 20 ?m or greater and 150 ?m or less. The switch section includes a plurality of contact points including a vertically movable contact point. When the glass layer is pushed, the glass layer elastically deforms and the plurality of contact points switch between a continuous state and a non-continuous state.
Type:
Application
Filed:
April 18, 2022
Publication date:
June 20, 2024
Applicant:
NITTO DENKO CORPORATION
Inventors:
Takeshi MURASHIGE, Takafumi HINO, Atsushi KISHI
Abstract: A wiring circuit board includes a metal supporting layer, an adhesion layer, a first conductive layer, an insulating layer, and a second conductive layer. The adhesion layer is disposed on one-side surface of the metal supporting layer in the thickness direction, and contains at least one metal selected from the group Zr, Ti, W, Mo, V, Y, Nb, and Ta. The first conductive layer is disposed on one-side surface of the adhesion layer in the thickness direction, and has an insulating layer with a penetrating hole disposed on a one-side surface thereof. The second conductive layer includes a portion electrically connected with the metal supporting layer through the adhesion layer located in the penetrating hole. The second conductive layer is located at one side of the metal supporting layer in the penetrating hole and one side of the insulating layer in the thickness direction.
Abstract: A method for producing a wiring circuit board includes a step (1) of producing a substrate with a metal support board including a metal support board and a step (2) of etching the metal support board. The wiring circuit board includes a frame, a mounting portion, an opening portion, and a joint. Each of the frame and the mounting portion includes a metal support layer, a base insulating layer, a conductive layer, and a cover insulating layer. The joint does not include the metal support layer. In step (2), by etching the metal support board corresponding to the opening portion and the joint from the other side in the thickness direction by using an etching resist, the metal support layer is formed.
Abstract: To provide an optical waveguide having excellent adhesive properties with respect to a substrate, an epoxy resin photosensitive composition for an optical waveguide and a photosensitive film for an optical waveguide for fabricating the optical waveguide, and an opto-electric hybrid board including the optical waveguide.
Abstract: A composite semipermeable membrane capable of forming, on a surface of a porous support in a highly reproducible manner, a separation layer that is extremely thin and that exhibits superior separability. It provides, on a surface of a porous support, a composite semipermeable membrane that has an organic/inorganic hybrid separation layer that is extremely thin and that exhibits superior separability. A method for manufacturing a composite semipermeable membrane includes forming, on a surface of a porous support, a separation layer containing a cross-linked condensate having a siloxane bond by bringing an organic solution that contains an organic silicon compound containing three or more reactive functional groups, each of which is at least one type selected from a hydrolyzable group and a hydroxyl group, into contact with water or an aqueous solution on the porous support, and by performing interfacial polycondensation of the organic silicon compound.
Type:
Grant
Filed:
January 9, 2023
Date of Patent:
June 18, 2024
Assignees:
NITTO DENKO CORPORATION, HIROSHIMA UNIVERSITY
Abstract: Provided is a polysulfide-based sealant that allows to obtain a highly reliable molded product (cured material) with reduced formation and growth of air bubbles. A sealant sheet formed in a sheet shape is provided. The sealant sheet comprises a polysulfide polymer (A), a thiol compound (B) having two or more thiol groups per molecule, an allyl compound (C) having two or more allyl groups per molecule, and a photo-radical generator (D).
Abstract: The present invention provides an optical laminate including a void-containing layer with high strength against peeling, a method for producing the optical laminate, an optical member including the optical laminate, an optical apparatus including the optical laminate, a method for producing the optical member, and a method for producing the optical apparatus. The optical laminate (10a) or (10b) of the present inventions includes: a void-containing layer (12); and a hard layer (13) formed on the void-containing layer (12), wherein the void-containing layer (12) has a void fraction of 30 vol % or more, the hard layer (13) includes at least one element selected from the group consisting of metal, metal oxide, silicon, silicon oxide and an organic-inorganic hybrid material, and hardness measured by pushing an indenter of a nano indenter into the hard layer (13) for 20 nm is larger than hardness of the void-containing layer (12).