Patents Assigned to OmniVision Technologies
  • Patent number: 8071429
    Abstract: Embodiments of a method for separating dies from a wafer having first and second sides. The process embodiment includes masking the first side of the wafer, the mask including openings therein to expose parts of the first side substantially aligned with scribe lines of the wafer. The process embodiment also includes etching from the exposed parts of the first side of the wafer until an intermediate position between the first and second sides and sawing the remainder of the wafer, starting from the intermediate position until reaching the second surface.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: December 6, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Duli Mao, Vincent Venezia, Wei Zheng, Keh-Chiang Ku, Howard E. Rhodes
  • Patent number: 8072685
    Abstract: A method for forming a lens assembly is provided, including: providing a mold substrate, wherein at least a recess is formed from a surface of the mold substrate; providing a transparent substrate; disposing a lens precursor material on the surface of the mold substrate or on a first surface of the transparent substrate; disposing the mold substrate on the transparent substrate such that at least a portion of the lens precursor material is filled in the recess; disposing a mask on a second surface of the transparent substrate to partially cover the transparent substrate; after the mask is disposed, irradiating a light on the second surface of the transparent substrate to transform at least a portion of the lens precursor material on the first surface of the transparent substrate into a lens; and removing the mask and the mold substrate from the transparent substrate and the lens.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 6, 2011
    Assignees: OmniVision Technologies, Inc., VisEra Technologies Company Limited
    Inventors: Han-Lin Wu, Chih-Chiang Ho, Lin-Ya Tseng, Chia-Yang Chang, Kuo-Jung Fu
  • Patent number: 8068163
    Abstract: Systems and methods include optics having one or more phase modifying elements that modify wavefront phase to introduce image attributes into an optical image. A detector converts the optical image to electronic data while maintaining the image attributes. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets, and independently processes the data sets to form processed electronic data. The processing may optionally be nonlinear. Other imaging systems and methods include optics having one or more phase modifying elements that modify wavefront phase to form an optical image. A detector generates electronic data having one or more image attributes that are dependent on characteristics of the phase modifying elements and/or the detector. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets and independently processes the data sets to form processed electronic data.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: November 29, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gregory E. Johnson, Edward R. Dowski, Jr., Kenneth S. Kubala, Ramakumar Narayanswamy, Hans Brandon Wach
  • Patent number: 8068153
    Abstract: A method of forming a full-color output image using a color filter array image having a plurality of color channels and a panchromatic channel, comprising capturing a color filter array image having a plurality of color channels and a panchromatic channel, wherein the panchromatic channel is captured using a different exposure time than at least one of the color channels; computing an interpolated color image and an interpolated panchromatic image from the color filter array image; computing a chrominance image from the interpolated color image; and forming the full color output image using the interpolated panchromatic image and the chrominance image.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 29, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Mrityunjay Kumar, James E. Adams, Jr.
  • Patent number: 8063465
    Abstract: A backside illuminated imaging sensor includes a vertical stacked sensor that reduces cross talk by using different silicon layers to form photodiodes at separate levels within a stack (or separate stacks) to detect different colors. Blue light-, green light-, and red light-detection silicon layers are formed, with the blue light detection layer positioned closest to the backside of the sensor and the red light detection layer positioned farthest from the backside of the sensor. An anti-reflective coating (ARC) layer can be inserted in between the red and green light detection layers to reduce the optical cross talk captured by the red light detection layer. Amorphous polysilicon can be used to form the red light detection layer to boost the efficiency of detecting red light.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: November 22, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Duli Mao, Vincent Venezia, Howard E. Rhodes
  • Patent number: 8059341
    Abstract: According to embodiments of the invention, a lens assembly and method for forming the same is provided. The method includes providing a first lens layer having a first transparent substrate and a first lens on the first transparent substrate, providing a second lens layer having a second transparent substrate and a second lens on the second transparent substrate, forming a spacer structure between the first lens layer and the second lens layer, and thinning the first transparent substrate to a first thickness after the spacer is formed.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: November 15, 2011
    Assignees: VisEra Technologies Company Limited, OmniVision Technologies, Inc.
    Inventors: Tzy-Ying Lin, Chieh-Yuan Cheng
  • Patent number: 8059180
    Abstract: An image sensor includes a pixel array divided into two or more corresponding sub-arrays. The pixel array includes an imaging area having a plurality of pixels and one or more reference areas each having a plurality of reference pixels. A continuous non-uniform light shield overlies, or individual non-uniform light shields overlie, each reference pixel in a row or column of reference pixels. An image sensor can include one or more rows or columns of reference pixels. An output channel is electrically connected to each sub-array for receiving the signals generated by the plurality of pixels and reference pixels in each sub-array. The pixel signals generated by the reference pixel pairs in one or more rows or columns in corresponding sub-arrays are used to determine one or more correction factors that compensate for the differences or mismatches between the output channels.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 15, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Shen Wang
  • Patent number: 8055066
    Abstract: An image sensing system provide feature tone detection. A feature tone detection module receives illumination compensated pixel data. To perform feature tone identification the illumination compensated pixel data is transformed to a color space having hue and saturation and then compared against pre-selected ranges of hue and saturation. Noise filtering is performed using an erosion-dilation process. A bit code is used to identify pixels having a specified feature tone, such as a skin tone.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: November 8, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Weihua Xiong, Jizhang Shan
  • Patent number: 8054355
    Abstract: An image sensor includes a first sensor layer having a first array of pixels and a second sensor layer having a second array of pixels. Each of the pixels has an optical center. The first sensor layer is stacked over the second sensor layer such that the optical centers of the first array of pixels are offset from the optical centers of the second array to form a predetermined pattern.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 8, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventors: John P. McCarten, Joseph R. Summa, Cristian A. Tivarus
  • Patent number: 8049256
    Abstract: A vertically-integrated active pixel sensor includes a sensor wafer connected to a support circuit wafer. Inter-wafer connectors or connector wires transfer signals between the sensor wafer and the support circuit wafer. The active pixel sensor can be fabricated by attaching the sensor wafer to a handle wafer using a removable interface layer. Once the sensor wafer is attached to the handle wafer, the sensor wafer is backside thinned to a given thickness. The support circuit wafer is then attached to the sensor wafer and the handle wafer separated from the sensor wafer.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: November 1, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Robert M. Guidash
  • Patent number: 8048711
    Abstract: An image sensor having an imaging area that includes a substrate layer and a plurality of pixels formed therein. Multiple pixels each include a photodetector formed in the substrate layer. Isolation layers are formed in the substrate layer by performing a series of implants of one or more dopants of a first conductivity type into the substrate layer. Each isolation layer implant is performed with a different energy than the other isolation layer implants in the series and each implant implants the one or more dopants into the entire imaging area. The photodetectors are formed in the substrate layer by performing a series of implants of one or more dopants of a second conductivity type into each pixel in the substrate layer. Each photodetector implant is performed with a different energy than the other photodetector implants in the series.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 1, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventors: Hung Q. Doan, Eric G. Stevens
  • Patent number: 8045017
    Abstract: Methods and systems for determining the frequency of the AC power supply of any pulsating light, such as fluorescent lights, for different purposes such as adjusting a camcorder's frame rate, is described in detail herein. In one embodiment a method is described that determines the frequency of the power supply, using a single sampling rate. In another embodiment two concurrent samplings of different rates are employed to determine the power supply frequency. Additionally, two exemplary systems describe the implementations of two embodiments of the presented methods.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: October 25, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Jizhang Shan
  • Patent number: 8045024
    Abstract: A method of forming a full-color output image using a color filter array image having a plurality of color channels and a panchromatic channel, comprising capturing a color filter array image having a plurality of color channels and a panchromatic channel, wherein the panchromatic channel is captured using a different exposure time than at least one of the color channels; computing an interpolated color image and an interpolated panchromatic image from the color filter array image; computing a transform relationship from the interpolated color image; and forming the full color output image using the interpolated panchromatic image and the functional relationship.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 25, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Mrityunjay Kumar, James E. Adams, Jr.
  • Patent number: 8035716
    Abstract: An image sensor includes a unit cell of four pixels. The unit cell includes four photosensitive regions that collect charge in response to light; four transfer transistors that respectively pass the charge from each of the four photosensitive regions to one common charge-to-voltage conversion mechanism; three control wires in which a first control wire controls two of the transfer transistors and a second control wire controls one of the transfer transistors and a third control wire controls one of the transfer transistors; an amplifier connected to the common charge-to-voltage conversion mechanism that outputs an output signal in response to a signal from the charge-to-voltage conversion mechanism; and a reset transistor connected to the common charge-to-voltage conversion mechanism for resetting the charge-to-voltage conversion mechanism to a predetermined signal level.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: October 11, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Christopher Parks
  • Patent number: 8031258
    Abstract: A method for using a capture device to capture at least two video signals corresponding to a scene, includes: providing a two-dimensional image sensor having a plurality of pixels; reading a first group of pixels from the image sensor at a first frame rate to produce a first video signal of the image scene; reading a second group of pixels from the image sensor at a second frame rate for producing a second video signal; and using at least one of the video signals for adjusting one or more of the capture device parameters.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: October 4, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Amy D. Enge, John T. Compton, Bruce H. Pillman
  • Patent number: 8022994
    Abstract: An image sensor has an array of photo-sensitive pixels and supports a line-by-line read out of rows. In a normal resolution each row has the same nominal gain and exposure time. In a down-sampling mode the exposure times of the rows are varied according to an alternating sequence having at least two different exposure times. During down-sampling, raw pixel data from rows with different exposure times is combined to simultaneously achieve down-sampling and a high dynamic range.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 20, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Xiaodong Luo, Hongli Yang
  • Patent number: 8022452
    Abstract: A source/drain region of a transistor or amplifier is formed in a substrate layer and is connected to a voltage source. A glow blocking structure is formed at least partially around the source/drain region and is disposed between the source/drain region and an imaging array of an image sensor. A trench is formed in the substrate layer adjacent to and at least partially around the source/drain region. The glow blocking structure includes an opaque material formed in the trench and one or more layers of light absorbing material overlying the source/drain region and the opaque material.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 20, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventors: Shen Wang, Robert P. Fabinski, Robert Kaser
  • Patent number: 8017427
    Abstract: Embodiments of a process comprising forming a pixel on a front side of a substrate, thinning the substrate, depositing a doped silicon layer on a backside of the thinned substrate, and diffusing a dopant from the doped silicon layer into the substrate. Embodiments of an apparatus comprising a pixel formed on a front side of a thinned substrate, a doped silicon layer formed on a backside of the thinned substrate, and a region in the thinned substrate, and near the backside, where a dopant has diffused from the doped silicon layer into the thinned substrate. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 13, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Sohei Manabe
  • Patent number: 8018016
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. An insulating layer is disposed over the backside. A circuit layer is formed adjacent to the frontside such that the sensor layer is positioned between the circuit layer and the insulating layer. One or more frontside regions of a second conductivity type are formed in at least a portion of the frontside of the sensor layer. A backside region of the second conductivity type is formed in the backside of the sensor layer. A plurality of frontside photodetectors of the first conductivity type is disposed in the sensor layer. A distinct plurality of backside photodetectors of the first conductivity type separate from the plurality of frontside photodetectors is formed in the sensor layer contiguous to portions of the backside region of the second conductivity type.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: September 13, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa, Eric G. Stevens, Hung Q. Doan, Robert M. Guidash
  • Patent number: 8017426
    Abstract: A backside illuminated image sensor includes a sensor layer comprising photosensitive elements of the pixel array, an epitaxial layer formed on a frontside surface of the sensor layer, and a color filter array formed on a backside surface of the sensor layer. The epitaxial layer comprises polysilicon color filter array alignment marks formed in locations corresponding to respective color filter array alignment mark openings in the frontside surface of the sensor layer. The color filter array is aligned to the color filter array alignment marks of the epitaxial layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: September 13, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventor: Frederick T. Brady