Patents Assigned to Pacesetter
  • Patent number: 9956413
    Abstract: Techniques are provided for use with implantable medical devices to deliver packed pacing using split or bifurcated pulses of opposing polarity in different cardiac cycles. In one example, packed single-phase pulses are delivered by the device during a first cardiac cycle that serve to stimulate heart tissue. During the next cardiac cycle, packed single-phase stimulation pulse of opposing polarity are delivered that serve to recharge the pacing capacitors and also serve to stimulate heart tissue. By separating the pulses into separate cardiac cycles, near simultaneous multisite packed stimulation can be achieved within each cardiac cycle while providing for charge balancing and without interfering with sensing. Non-packed pacing with bifurcated pulses is also described.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 1, 2018
    Assignee: PACESETTER, INC.
    Inventor: Gene A. Bornzin
  • Patent number: 9949660
    Abstract: Methods and systems are provided for discriminating rhythm patterns in cardiac activity. The method and system obtain cardiac activity data for multiple cardiac beats over a predetermined period of time. Multi-beat segments within the cardiac activity data exhibit different rhythm patterns of interest including fast and slow rhythm patterns. The method and system calculate a cardiac beats timing relation representative of intervals between the cardiac beats within a measurement window, wherein the measurement window is configured to overlap the corresponding multi-beat segment. The method and system designate the cardiac beats timing relation to have one of the rhythm patterns of interest based on a rate threshold, identifies when successive multi-beat segments exhibit rhythm patterns that transition between the fast and slow irregular rhythm patterns and records the irregular rhythm pattern transition in connection with the cardiac activity data.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 24, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Lisa P. Weinberg, Pritika Toutam
  • Patent number: 9955289
    Abstract: The present disclosure provides a near field communications (NFC) detector network for use in an implantable medical device. The NFC detector network includes a combined Bluetooth low energy (BLE)NFC antenna, a BLE transceiver, a BLE path electrically connecting the combined BLE/NFC antenna to the BLE transceiver and configured to communicate BLE signals received at the combined BLE/NFC antenna to the BLE transceiver, and an NFC path electrically connecting the combined BLE/NFC antenna to the BLE transceiver, the NFC path configured to generate an activation signal for the BLE transceiver based on an NFC signal received at the combined BLE/NFC antenna.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: April 24, 2018
    Assignee: PACESETTER, INC.
    Inventors: Franklin Liu, Jorge N. Amely-Velez, Perry Li
  • Patent number: 9925379
    Abstract: A computer implemented method and system is provided for managing neural stimulation therapy. The method comprises under control of one or more processors configured with program instructions. The method delivers a series of candidate stimulation waveforms having varied stimulation intensities to at least one electrode located proximate to nervous tissue of interest. A parameter defines the candidate stimulation waveforms is changed to vary the stimulation intensity. The method identifies a first candidate stimulation waveform that induces a paresthesia-abatement effect, while continuing to induce a select analgesic effect. The method further identifies a second candidate stimulation waveform that does not induce the select analgesic effect. The method sets a stimulation therapy based on the first and second candidate stimulation waveforms.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 27, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Alexander Kent, Richard Williamson
  • Patent number: 9925369
    Abstract: Disclosed herein is an implantable lead configured to administer electrotherapy to a patient heart from an implantable pulse generator. The lead may include a lead body and an attachment structure. The lead body includes a bifurcated distal region including first and second lead body branches each terminating in a distal end. At least one of the first lead body branch or second lead body branch includes an electrode. The attachment structure couples together the distal ends of the first and second lead body branches. The attachment structure is configured to release such that the distal ends of the first and second lead body branches can decouple from each other.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 27, 2018
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Didier Theret, Zoltan Somogyi
  • Patent number: 9918677
    Abstract: This invention relates generally to systems and methods for optimizing the performance and minimizing complications related to implanted sensors, such as pressure sensors, for the purposes of detecting, diagnosing and treating cardiovascular disease in a medical patient. Systems and methods for anchoring implanted sensors to various body structures is also provided.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: March 20, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Neal L. Eigler, Brian M. Mann, James S. Whiting, Werner Hafelfinger
  • Patent number: 9907953
    Abstract: A leadless pulse generator is disclosed herein. The leadless pulse generator has a body, a helical anchor, an electrode, and a sleeve. The body includes a distal end and a proximal end opposite the distal end. The helical anchor distally extends from the distal end. The electrode is at the distal end. The sleeve distally extends from the distal end and has a proximal face and a distal face opposite the proximal face. The proximal face is adjacent the body. The sleeve coaxially extends about the helical anchor and further has a biased state wherein the distal face is near a distal tip of the helical anchor. The sleeve is configured to compress such that the distal face displaces proximally towards the proximal face upon the distal face being forced against the cardiac tissue in the course of the helical anchor screwing into the cardiac tissue.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: March 6, 2018
    Assignee: PACESETTER, INC.
    Inventors: Sondra Orts, Carl Lance Boling, Matthew G. Fishler, Benjamin F. James, IV, Xiangqun Chen
  • Patent number: 9907486
    Abstract: Example electronic devices, including but not limited to implantable medical devices, and methods employing dynamic announcing for creation of wireless communication connections are disclosed herein. In an example, an electronic device includes a wireless communication interface to transmit announcement signals for creating a wireless communication connection with the external device. The electronic device also includes a sensor to detect a characteristic of an environment external to the electronic device, and a control circuit including an announcement timing control module to dynamically control timing of the announcement signals based on the detected characteristic.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: March 6, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Timothy Pflugh, Fujian Qu, Benjamin Coppola, Edward Karst, Lisa P. Weinberg
  • Patent number: 9895531
    Abstract: A protective patch or bandage is provided for use with an implantable trial neurostimulation lead for implant within a patient. In one example, the lead is routed through the patch to a trial neurostimulation generator. In another example, the patch includes an internal electrical connector for connecting the trial neurostimulation lead to a connection line from the trial neurostimulation generator. In either case, the patch is sealed over an implant site to protect and hygienically isolate the site. A central chamber of the patch is provided to hold medical gauze and to further hold a coiled portion of the neurostimulation lead. In some examples, the patient can shower while wearing the protective patch.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: February 20, 2018
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Jenner Joseph, Katie Hoberman, Zoltan Somogyi, Chris Condit, Heidi Hellman
  • Patent number: 9895076
    Abstract: A method and system are provided for analyzing data for a region of interest in connection with cardiac mapping. The method and system acquire data recordings of at least one of electrical sensor measurements from an electrical sensor and motion data from a motion sensor in contact with the region of interest, determine cycle lengths associated with cardiac events in the data recordings; and identify a reference cycle length from the cycle lengths determined. The method and system analyze the cycle lengths such that differences in heart rate and cycle length have limited effect on an overall map.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: February 20, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Hoda Razavi
  • Patent number: 9889305
    Abstract: Systems and methods are provided for managing patient activated capture of transient data by an implantable medical device (IMD). The systems and methods collect transient data using the IMD. The collected transient data is stored in a temporary memory section of the IMD. The IMD receives a patient activated storage request including activation information related to a patient designated trigger point from an external device. The IMD transfers a segment of the transient data from the temporary memory section to a long-term memory, wherein the segment of transferred transient data is based on the trigger point. The activation information includes an elapsed time corresponding to a duration of time between entry of the trigger point and issuance of the patient activated storage request by an external activation device.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 13, 2018
    Assignee: Pacesetter Inc.
    Inventors: Heidi Hellman, Joanna Urbanski, Simon Skup
  • Patent number: 9894691
    Abstract: Systems and methods are provided for establishing a bi-directional communication link with an implantable medical device. The systems and methods include an implantable medical device (IMD) and an external instrument configured to establish a wireless bi-directional communication link there between over a wireless protocol. The wireless bi-directional communication link is established based on a scanning interval. The external instrument includes one or more processors electrically coupled to a radio frequency (RF) circuit and a memory device. The one or more processors are configured to define the scanning interval based on an advertising schedule received from the IMD.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 13, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Heidi Hellman, Tejpal Singh, Yongjian Wu, Reza Shahandeh, Youjing Huang, Chao-Wen Young
  • Patent number: 9878151
    Abstract: A leadless intra-cardiac medical device (LIMD) includes an electrode assembly configured to be anchored within a first wall portion of a first chamber of a heart. The electrode assembly includes an electrode main body having a first securing helix, an electrode wire segment extending from the body, and a first segment-terminating contact positioned on the electrode wire segment. The device further includes a housing assembly configured to be anchored within a second wall portion of a second chamber of the heart. The housing assembly includes a body having a second securing helix, a housing wire segment extending from the body, and a second segment-terminating contact positioned on the housing wire segment. The device also includes a connector block that electrically connects the electrode wire segment to the housing wire segment by retaining the first and second segment-terminating contacts.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: January 30, 2018
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Xiaoyi Min
  • Patent number: 9872999
    Abstract: A cardiac pacing system comprising one or more leadless cardiac pacemakers configured for implantation in electrical contact with a cardiac chamber and configured to perform cardiac pacing functions in combination with a co-implanted implantable cardioverter-defibrillator (ICD). The leadless cardiac pacemaker comprises at least two leadless electrodes configured for delivering cardiac pacing pulses, sensing evoked and/or natural cardiac electrical signals, and bidirectionally communicating with the co-implanted ICD.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: January 23, 2018
    Assignee: Pacesetter, Inc.
    Inventor: Peter M. Jacobson
  • Patent number: 9872980
    Abstract: The present disclosure provides neurostimulation systems and methods. A neurostimulation system includes at least one anode, at least one cathode, the at least one anode and the at least one cathode configured to apply electrical stimulation to a patient, and a controller electrically coupled to the at least one anode and the at least one cathode, the controller configured to determine when one of the at least one anode and the at least one cathode fails, measure, in response to the determination, a quantity indicative of a charge density of the applied electrical stimulation, compare the measured quantity to a predetermined limit, and perform at least one action when the measured quantity exceeds the predetermined limit.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 23, 2018
    Assignee: PACESETTER, INC.
    Inventors: Lanitia Ness, Martin Cholette
  • Patent number: 9861823
    Abstract: Embodiments of the present disclosure provide a method of determining an inter-chamber delay within a heart of an individual that may include determining a position of a first sensor in a first chamber of the heart, determining a position of a second sensor in a second chamber of the heart, automatically computing a distance between the first and second sensors, and automatically determining the inter-chamber delay based on the automatically computing operation.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: January 9, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Hoda Razavi
  • Patent number: 9859065
    Abstract: An electrolytic capacitor is disclosed having a housing in an arced-trapezoidal shape. Disposed within the housing are one or more anodes, one or more cathodes, one or more separators disposed between anodes that are adjacent anodes cathodes, and an electrolyte disposed around the one or more anodes, the one or more cathodes, and the one or more separators within the housing. The housing of the electrolytic capacitor includes front and back walls shaped as arced-trapezoids and four sidewalls that substantially follow the outline of the front and back walls. The electrolytic capacitor is configured to connect in series with one or more electrolytic capacitors of the same shape to form a capacitor assembly. In the capacitor assembly, electrolytic capacitors are placed such that sidewalls are adjacent to each other to form a D-shaped capacitor assembly.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 2, 2018
    Assignee: PACESETTER, INC.
    Inventors: Wisit Lim, Ralph Jason Hemphill, Troy L. McCurry, Peter Fernstrom
  • Patent number: 9855433
    Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 2, 2018
    Assignee: Pacesetter, Inc
    Inventors: Reza Shahandeh, Richard Williamson, Gabriel A. Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
  • Patent number: 9855435
    Abstract: The present disclosure provides leadless pacemaker systems and methods. A leadless pacemaker includes a battery subassembly, a feedthrough subassembly, and an electronics subassembly coupled between the battery subassembly and the feedthrough subassembly, the electronics subassembly including an electronics package, and a housing configured to provide a hermetic seal and comprising a first retaining feature and a second retaining feature configured to secure the electronics package within the housing.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: January 2, 2018
    Assignee: PACESETTER, INC.
    Inventors: Kavous Sahabi, Arees Garabed
  • Patent number: 9852849
    Abstract: A process for creating an anode foil for use in an electrolytic capacitor of an implantable cardioverter defibrillator is provided. The process includes placing a partially masked bulk metal foil in an etch electrolyte solution to etch exposed area of the bulk metal foil, removing the etch-resistant mask to expose the unetched areas, widening the bulk metal foil, and partially cutting the bulk metal foil between a plurality of unetched areas to form a partially detached etched foil anode, such that the unetched areas are not cut and the unetched areas serve as attachment tabs to keep the partially detached etched foil anode attached to the bulk metal foil. Additionally, the process may include an oxide formation step, wherein the step of partially cutting the bulk metal foil is performed after the etching and widening steps, and before the oxide formation step.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 26, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas F. Strange, David R. Bowen, Troy L. McCurry, Peter Fernstrom