Abstract: Example implantable cardiac stimulation devices, pulse generators, and methods providing enhanced cardiac pacing energy are disclosed herein. In an example, an implantable cardiac stimulation device may include a pulse generator having a pacing output node providing cardiac pacing pulses to be applied to a heart of a patient. The pulse generator may include a pulse voltage regulator that receives a pacing signal and generates cardiac pacing pulses at an output of the pulse voltage regulator according to the pacing signal. The pulse voltage regulator may receive a supply voltage to generate cardiac pacing pulses at the supply voltage, gated by the pacing signal.
Abstract: The present disclosure may take the form of a method of optimizing CRT wherein candidate pacing settings are administered at a candidate lead implantation site. Such a method may comprise: determining a navigation sensor path at a measurement site for each candidate pacing setting at the candidate lead implantation site; and identifying which navigation sensor path corresponds to a most efficient cardiac tissue displacement.
Type:
Grant
Filed:
April 28, 2016
Date of Patent:
December 12, 2017
Assignee:
PACESETTER, INC.
Inventors:
Wenbo Hou, Craig D. Markovitz, Chunlan Jiang, Stuart Rosenberg
Abstract: In accordance with one embodiment, a blood glucose sensing device is provided that comprises a house having of an exterior surface and that defines an interior space. The housing is configured to be located within a cardiovascular pathway of a patient. An inductor-capacitor (LC) circuit is located within the interior space defined by the housing. The inductor-capacitor circuit comprises an inductive circuit and a capacitive circuit electronically coupled to one another. The inductive and capacitive circuit has inductance and capacitance values that define a blood glucose sensitive resonant frequency such that a resonant frequency of the LC resonant circuit varies in response to changes in blood glucose levels within the blood in the cardiovascular pathway surrounding the housing.
Abstract: Fabricating a capacitor includes performing an oxide formation operation on a sheet of material. The oxide formation operation forms an anode metal oxide on an anode metal. A thermal compression is performed on the sheet of material after the oxide formation operation is performed. The thermal compression applies thermal energy to the sheet of material while applying pressure to the sheet of material. After the thermal compression, the capacitor is assembled such that at least one electrode in the capacitor includes at least a portion of the sheet of material.
Abstract: An implantable medical device (IMD) is configured to be implanted within a patient. The IMD may include a controller configured to adjust a communication frequency, a housing formed of an electrically common material, and an insulating cover coupled to the housing. The insulating cover may include one or both of at least one opening or at least one thinned area over portions of the housing. Multiple sub-electrodes are formed in the housing through the opening(s) or the thinned area(s).
Type:
Grant
Filed:
November 28, 2016
Date of Patent:
December 5, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Gleb Klimovitch, Timothy Edward Ciciarelli
Abstract: A cardiac rhythm management system provides an increase in pacing rate as a combination of responses to three characteristics of a relative-temperature signal: a dip, a positive slope, and a positive magnitude. The relative-temperature signal is the difference between a short-term and a long-term temperature average. A dip produces a limited and temporary rate increase having a first proportionality. A positive slope produces a rate increase with a second proportionality. A positive magnitude produces a rate increase with a third proportionality. The dip response seeds the slope response to provide a seamless and immediate rate transition after a dip. The cardiac rhythm management system limits and filters the sum of the rate increases to provide a sensor indicated rate, which is used to stimulate the heart.
Type:
Grant
Filed:
May 14, 2015
Date of Patent:
December 5, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Donald Chin, Matthew G. Fishler, Peter M. Jacobson
Abstract: A cathode element is formed as a continuous single element with a plurality of cathode leaves connected by cathode bridges. An anode element is similarly formed as a continuous single element with a plurality of anode leaves connected by anode bridges. The cathode element and anode element can be aligned and interleaved at spaces between adjacent leaves. The resulting battery pre-stack can then be folded along its bridges in alternating directions to form a battery stack whose layers alternate between an anode and cathode, and which requires minimal components and minimal or no welds.
Abstract: Methods and system are provided that identify motion data associated with consistent electrical and mechanical behavior for a region of interest of the heart. The methods and systems acquire electrical cardiac signals indicative of physiologic behavior of at least a portion of the heart over a plurality of cardiac cycles. The methods and systems acquires motion data indicative of mechanical behavior of a motion sensor over the plurality of cardiac cycles to form a motion data collection, the motion data indicative of mechanical behavior of the region of interest when the motion sensor is in contact with the region of interest. The designating ectopic beats within the cardiac cycles may be based on the electrical cardiac signals, the ectopic beats producing electrically inconsistent (EI) data within the motion data collection. The methods and systems identify mechanically inconsistent (MI) data within the motion data collection based on irregular changes in the motion data.
Abstract: An active implantable medical device is disclosed herein having a radio-opaque marker. The radio-opaque marker can be formed within an exterior wall of the device or within recesses on the outside of the exterior wall. The implantable medical device can be a leadless pacemaker. The shape of the radio-opaque marker can be designed to facilitate visualization and identification of the location, orientation, and rotation of the implanted medical device by conventional fluoroscopy. Methods of use are also disclosed.
Type:
Grant
Filed:
August 21, 2013
Date of Patent:
November 7, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Alan Ostroff, Paul Paspa, Peter M. Jacobson, Wade A. Keller, Christopher Alan Hubbard
Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
Type:
Grant
Filed:
July 27, 2016
Date of Patent:
October 31, 2017
Assignee:
PACESETTER, INC.
Inventors:
Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Type:
Grant
Filed:
August 1, 2013
Date of Patent:
October 31, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.
Type:
Grant
Filed:
April 8, 2015
Date of Patent:
October 24, 2017
Assignee:
PACESETTER, INC.
Inventors:
Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
Abstract: The present disclosure provides systems and methods for cardiac stimulation. A cardiac stimulation device includes a plurality of electrodes, and a pulse circuit electrically coupled to the plurality of electrodes, the pulse circuit including a capacitor configured to charge to an initial charge level, deliver a test pulse having a first amplitude to the plurality of electrodes by only partially discharging, and subsequently deliver a backup pulse to the plurality of electrodes, the backup pulse having a second amplitude that is larger than the first amplitude.
Type:
Grant
Filed:
October 8, 2015
Date of Patent:
October 24, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Benjamin T. Persson, Matthew G. Fishler
Abstract: Implantable medical devices (IMDs), and methods for use therewith, use a same coil for receiving communication and power signals. An IMD, which is configured to operate in a charge or power mode and in a communication mode, includes a coil, power circuitry and communication circuitry. The coil includes first and second terminals and an intermediate tap therebetween. The power circuitry is coupled, during the charge or power mode, to a first portion of the coil extending between the first and second terminals of the coil. The communication circuitry is coupled to a second portion of the coil extending between the first terminal and the intermediate tap of the coil. A third portion of the coil, extending between the intermediate tap and the second terminal of the coil, is decoupled from the power circuitry during the communication mode, which prevents current from flowing through the third portion of the coil.
Abstract: Disclosed herein is an implantable electronic device. The device has a housing and a header connector assembly coupled to the housing. The header connector assembly has a connector assembly and a header enclosing the connector assembly. The connector assembly has a subassembly including an electrically conductive component at least partially residing within a first material that is provided about the electrically conductive component. The header has a second material that is provided about the connector assembly and the subassembly subsequent to the first material setting up about the electrically conductive component.
Type:
Grant
Filed:
March 21, 2016
Date of Patent:
October 24, 2017
Assignee:
PACESETTER, INC.
Inventors:
Dino Bortolin, Ofer Rosenzweig, Christopher R. Jenney, Avi Bilu
Abstract: The present disclosure provides systems and methods implemented using physical property sensors. A physical/property sensor includes a sensor coil configured to wirelessly communicate with an external interrogator, an analog front end communicatively coupled to the sensor coil, a microcontroller communicatively coupled to the analog front end, and a physical property sensing element, wherein the microcontroller is configured to generate a digitally modulated electrical signal based on signals generated by the physical property sensing element, and wherein the analog front end is configured to forward the digitally modulated electrical signal to the sensor coil for transmission to the external interrogator.
Abstract: A method and system are provided for subdividing a region of interest. The method and system utilize an intravascular mapping tool configured to be inserted into at least one of the endocardial or epicardial space. The mapping tool is maneuvered to select locations proximate to surfaces of the heart, while collecting map points at the select locations to form a point cloud data set during at least one cardiac cycle. The method and system further include selecting a region of interest from the point cloud data set, and forming a triangulation area that include a set of map points from the point cloud data set corresponding to the region of interest. Further, the method and system use a triangulation technique algorithm to generate at least one triangle within the triangulation area formed from at least a portion of the set of map points.
Abstract: A system and method for controlling non-paresthesia stimulation of neural tissue of a patient. The method delivers a non-paresthesia stimulation waveform, senses sensory action potential (SAP) signals from the neural tissue of interest, and analyzes the SAP signals to obtain SAP activity data for at least one of an SAP C-fiber component or an SAP A-delta fiber component. The method determines whether the SAP activity data satisfies a criteria of interest and adjusts at least one of the therapy parameters to change the non-paresthesia stimulation waveform when the SAP activity data does not satisfy the criteria of interest.
Type:
Application
Filed:
March 27, 2017
Publication date:
September 14, 2017
Applicant:
Pacesetter, Inc.
Inventors:
Wenbo Hou, Melanie Goodman Keiser, Xiaoyi Min, Bruce A. Morley
Abstract: An implantable system includes terminals, a pulse generator, a sensing circuit, separate signal processing channels, and first, second and third multiplexers. The terminals are connected to electrodes via conductors of leads. Different subsets of the electrodes are used to define different electrical pulse delivery vectors, and different subsets of the electrodes are used to define different sensing vectors. The pulse generator produces electrical pulses, and the sensing circuit senses a signal indicative of an impedance associated with a selected sensing vector. The first multiplexer selectively connects outputs of the pulse generator to a selected one of the different electrical pulse delivery vectors at a time. The second multiplexer selectively connect inputs of the sensing circuit to a selected one of the different sensing vectors at a time. The third multiplexer selectively connects an output of the sensing circuit to one of the plurality of separate signal processing channels at a time.
Type:
Grant
Filed:
June 23, 2015
Date of Patent:
September 12, 2017
Assignee:
Pacesetter, Inc.
Inventors:
Cecilia Qin Xi, Jimmy Johansson, Allan Olson, Weiqun Yang
Abstract: A lead implantation tool is used for the implantation of active fixation medical leads. The tool may be configured to operably couple to a lead connector end of an implantable cardiac electrotherapy lead including an active fixation helix tip and wherein the lead connector end includes a contact pin proximally extending from the lead connector end. The tool may include a feature configured to couple to the contact pin and a first mechanism configured to convert linear movement into rotational movement of the contact pin relative to the lead connector end. The tool may further include a second mechanism that causes a stylet extending through the tool and into the contact pin to at least one of distally and proximally displace within the contact pin.