Patents Assigned to Pacesetter
  • Patent number: 9462959
    Abstract: In specific embodiments, a method to monitor left atrial pressure and/or intra-thoracic fluid volume of a patient, comprises (a) monitoring posture of the patient using a posture sensor implanted within the patient, and (b) using portions of an impedance signal, obtained using implanted electrodes, to monitor the left atrial pressure and/or intra-thoracic fluid volume of the patient. Each portion of the impedance signal used to monitor the left atrial pressure and/or intra-thoracic fluid volume of the patient corresponds to a period after which the patient has maintained a predetermined posture for at least a predetermined period of time, and during which the patient has remained in the predetermined posture.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 11, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Fujian Qu, Steve Koh, Dan E. Gutfinger, Alex Soriano
  • Patent number: 9463315
    Abstract: A method of implanting a leadless intra-cardiac medical device. An introducer assembly is introduced into one of an inferior vena cava or a superior vena cava of a heart and maneuvered into a first chamber of the heart. A housing is pushed out of a sheath of the introducer toward a first implant location within the first chamber, and the housing is anchored to the first implant location. The sheath is moved away from the anchored housing, and an electrode is urged to a distal end of the sheath due to the pushing, anchoring, and moving. The sheath is maneuvered to a second chamber of the heart, and the electrode is forced into a second implant location with the second chamber. The electrode is anchored to the second implant location. The sheath is moved away from the electrode after the anchoring, and the sheath is removed from the heart.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: October 11, 2016
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, John W. Poore, Zoltan Somogyi
  • Publication number: 20160279419
    Abstract: An exemplary method for optimizing pacing configuration includes providing distances between electrodes of a series of three or more ventricular electrodes associated with a ventricle; selecting a ventricular electrode from the series; delivering energy to the ventricle via the selected ventricular electrode, the energy sufficient to cause an evoked response; acquiring signals of cardiac electrical activity associated with the evoked response via non-selected ventricular electrodes of the series; based on signals of cardiac electrical activity acquired via the non-selected ventricular electrodes and the distances, determining conduction velocities; based on the conduction velocities, deciding if the selected ventricular electrode is an optimal electrode for delivery of a cardiac pacing therapy; and, if the selected ventricular electrode comprises an optimal electrode for delivery of the cardiac pacing therapy, calling for delivery of the cardiac pacing therapy using the selected ventricular electrode.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Applicant: PACESETTER, INC.
    Inventors: Kyungmoo Ryu, Xiaoyi Min
  • Patent number: 9446246
    Abstract: An implantable cardiac therapy device and methods of using a device including an implantable stimulation pulse generator, one or more implantable leads defining sensing and stimulation circuits adapted to sense and deliver therapy in at least one right side heart chamber, and an implantable controller in communication with the stimulation pulse generator and the one or more patient leads so as to receive sensed signals indicative of a patient's physiologic activity and deliver indicated therapy. The controller is adapted to monitor at least one indicator of cardiac dysynchrony and to compare the at least one indicator to a determined dysynchrony threshold. The threshold is determined for indications that the patient be further evaluated for cardiac resynchronization therapy. The controller is further adapted to set an alert when the at least one indicator exceeds the threshold to indicate to a clinician that evaluation for bi-ventricular pacing might be indicated.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 20, 2016
    Assignee: PACESETTER, INC.
    Inventors: Stuart O. Schecter, Xiaoyi Min
  • Patent number: 9445264
    Abstract: A system and method are provided for initiating a secured bi-directional communication session with an implantable medical device. The system and method include configuring a pulse generator (PG) device and an external device to establish a communication link there between through a wireless protocol with a defined bonding procedure. The system and method also include transmitting a static identification and dynamic seed from the PG device through a dedicated advertisement channel to the external device and generating a passkey from a pre-defined algorithm based on the dynamic seed and a static identification. Further, the system and method include starting the defined bonding procedure.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: September 13, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Chao-Wen Young, Yongjian Wu, Min Yang, Erik Shreve, Andrew Rissing, Jun Yang, Thanh Tieu, Mostafa Sadeghi
  • Patent number: 9433793
    Abstract: A system and method provide precise detection of the time of occurrence of a cardiac event of a heart. The method comprises the steps of sensing electrical activity of the heart to generate an electrogram of the heart and applying the electrogram to an event detector having a plurality of spaced apart thresholds. The thresholds are selected such that the electrogram has an amplitude for crossing at least one of the thresholds. The method further comprises determining a characteristic identifying feature of the electrogram at each threshold crossing of the electrogram, comparing the determined characteristic identifying features to an electrogram template, and identifying the time of occurrence of the cardiac event based upon the comparison.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: September 6, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Rupinder Bharmi, Jeffery D. Snell
  • Patent number: 9433792
    Abstract: Diastolic function is monitored within a patient based on dynamic cardiogenic impedance as measured by a pacemaker or other implantable medical device. In one example, the device uses ventricular cardiogenic impedance values to detect E-wave parameters representative of passive filling of the ventricles. Atrial cardiogenic impedance values are used to detect A-wave parameters representative of active filling of the ventricles. Diastolic function is then assessed or evaluated based on the E-wave and A-wave parameters. Various functions of the implantable device are then controlled based on the assessment of diastolic function, such as by adjusting atrioventricular delay parameters to improve diastolic function. In some examples, the detection of E- and A-wave parameters is achieved by aligning impedance signals to atrial activation, and separately to ventricular activation, during asynchronous VOO pacing or while artificially inducing a 2:1 block.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: September 6, 2016
    Assignee: PACESETTER, INC.
    Inventors: Stuart Rosenberg, Kritika Gupta, Riddhi Shah, Rupinder Bharmi, Edward Karst, Gene A. Bornzin
  • Patent number: 9427579
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 30, 2016
    Assignee: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9427595
    Abstract: A neurostimulation patch is affixed to a patient's skin (e.g., via a medical skin adhesive) and provides stimulation energy for an implanted lead. The patch may be used for SCS trials or other applications where is it desirable to avoid implanting a stimulation device within a patient. Circuitry in the patch generates stimulation signals and couples these signals to the implanted lead. The signals may be coupled to the lead via a direct physical connection or via a wireless connection. In some embodiments, the neurostimulation patch is configured in a manner that enables the patch to be placed immediately above the puncture site where an associated percutaneous lead passes through a patient's skin, thereby protecting the puncture site and facilitating secure routing of the lead.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 30, 2016
    Assignee: PACESETTER, INC.
    Inventors: Yelena Nabutovsky, Melanie Goodman Keiser, Gene A. Bornzin
  • Patent number: 9427594
    Abstract: A distributed leadless implantable system and method are provided that comprise a leadless implantable medical device (LIMD). The LIMD comprises a housing having a proximal end configured to engage local tissue of interest in a local chamber, cardiac sensing circuitry to sense cardiac signals; and a controller configured to analyze the cardiac signals and, based thereon, to produce a near field (NF) event marker indicative of a local event of interest (EOI) occurring in the local chamber. The system and method further comprise a subcutaneous implantable medical device (SIMD). The SIMD comprises cardiac sensing circuitry to sense cardiac signals, a controller configured to identify a candidate EOI from the cardiac signals, and pulse sensing circuitry to detect the NF event marker from the LIMD. The SIMD controller is configured to declare the candidate EOI as a valid EOI or an invalid EOI based on the NF event marker.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 30, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Laurence S. Sloman, John W. Poore, Yelena Nabutovsky
  • Patent number: 9427592
    Abstract: Techniques are provided for use with implantable medical devices or trial medical devices for wirelessly connecting the devices to external instruments such as tablet computers or smartphones. In an example where the medical device is an implantable neurostimulator, the neurostimulator passively detects wireless wake-up signals generated by the external instrument, i.e. the neurostimulator “sniffs” for advertisement signals generated by the external instrument. In response to passive detection of a wake-up signal, the implantable neurostimulator determines if a response is warranted and, if so, the neurostimulator activates its wireless transmission components to transmit an acknowledgement signal to the external instrument so as to complete a wake-up and handshake protocol.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: August 30, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Yongjian Wu, Chao-Wen Young, Jun Yang, Reza Shahandeh, Thanh Tieu, Min Yang
  • Patent number: 9421360
    Abstract: A medical device configured to be secured to an individual may include a housing containing one or more electrical components, and one or more leads electrically connected to the housing. Each lead may include an insulating jacket that surrounds a central core including one or more conductors, and at least one pressure-resisting member integrally formed with one or both of the insulating jacket or the central core. The pressure-resisting member is configured to resist one or more forces exerted into the central core. For example, the pressure-resisting member may include one or more of a suture-anchoring member or a lead-strengthening member.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 23, 2016
    Assignee: PACESETTER, INC.
    Inventors: Steven R. Conger, Michael Childers, Yoheng Hanson Chang, Tyler Strang, John R. Helland
  • Patent number: 9421377
    Abstract: The present disclosure provides systems and methods utilizing a closed-loop neurostimulation apparatus. The apparatus includes at least one sensing electrode that monitors neurological activity of a subject and at least one stimulating electrode that applies stimulation pulses to the subject. An internal pulse generator is coupled to the at least one sensing electrode and the at least one stimulating electrode. The internal pulse generator causes the at least one stimulating electrode to apply stimulating pulses based at least in part on the monitored neurological activity.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: August 23, 2016
    Assignee: PACESETTER, INC.
    Inventors: Lalit Venkatesan, Stuart Rosenberg
  • Patent number: 9415226
    Abstract: During cross-chamber pacing, where anodal capture may not be desirable, pulses are applied between a cathode electrode in a first chamber and an anode electrode in a second chamber. A capture detector detects for capture of the second chamber by the pacing pulses. If capture of the second chamber persists, another electrode is selected as the anodal electrode. During single-chamber pacing, where anodal capture may be desirable, pulses are applied between a cathode electrode and an anode electrode associated with the same chamber. A capture detector detects for capture at both electrodes. If anodal capture is not detected, the energy of the pacing pulse is increased, until anodal capture is detected.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 16, 2016
    Assignee: PACESETTER, INC.
    Inventors: Jeffery D. Snell, Gene A. Bornzin, Laurence S. Sloman, Jong Gill
  • Patent number: 9412525
    Abstract: Anode foils suitable for use in electrolytic capacitors, including those having multiple anode configurations, have improved strength, reduced brittleness, and increased capacitance compared to conventional anode foils for electrolytic capacitors. Exemplary methods of manufacturing an anode foil suitable for use in an electrolytic capacitor include disposing a resist material in a predetermined pattern on an exposed surface of an anode foil substrate such that a first portion of the exposed surface of the anode foil substrate is covered by the resist material, and a second portion of the exposed surface remains uncovered; polymerizing the resist material; exposing at least the second portion of the exposed surface to one or more etchants so as to form a plurality of tunnels; stripping the polymerized resist material; and widening at least a portion of the plurality of tunnels. The resist material may be deposited, for example, by ink-jet printing, stamping or screen printing.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 9, 2016
    Assignee: Pacesetter, Inc.
    Inventors: David R. Bowen, Ralph Jason Hemphill, Xiaofei Jiang, Corina Geiculescu, Tearl Stocker
  • Patent number: 9409033
    Abstract: A cardiac pacing system comprising one or more leadless cardiac pacemakers configured for implantation in electrical contact with a cardiac chamber and configured to perform cardiac pacing functions in combination with a co-implanted implantable cardioverter-defibrillator (ICD). The leadless cardiac pacemaker comprises at least two leadless electrodes configured for delivering cardiac pacing pulses, sensing evoked and/or natural cardiac electrical signals, and bidirectionally communicating with the co-implanted ICD.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 9, 2016
    Assignee: Pacesetter, Inc.
    Inventor: Peter M. Jacobson
  • Patent number: 9402995
    Abstract: The present disclosure provides systems and methods for providing both neurostimulation and defibrillation therapy. The system includes an implantable pulse generator (IPG), at least one neurostimulation electrode electrically coupled to the IPG and configured to apply neurostimulation pulses to a subject, and at least one defibrillation electrode electrically coupled to the IPG and configured to apply defibrillation pulses to the subject.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: August 2, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Wenbo Hou, Timothy A. Fayram
  • Patent number: 9399129
    Abstract: An implantable medical lead is disclosed herein. The lead may include a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and may include a coiled inductor including first and second electrically conductive filar cores. The first and second filar cores may be physically joined into a unified single piece proximal terminal on a proximal end of the coiled inductor. The first and second cores may be physically joined into a unified single piece distal terminal on a distal end of the coiled inductor. The first and second filar cores may be helically wound into a coiled portion between the proximal and distal terminals, the filar cores being electrically isolated from each other in the coiled portion.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 26, 2016
    Assignee: PACESETTER, INC.
    Inventors: Yong D. Zhao, Xiaoyi Min, Virote Indravudh
  • Patent number: 9387329
    Abstract: Techniques are provided for use by implantable medical devices for controlling multi-site left ventricular (MSLV) pacing using a multi-pole left ventricular (LV) lead. In various examples, a reduced number of “V sense”, “RV pace”, and “LV pace” tests are performed to determine preferred or optimal interventricular pacing delays (VV) for use with MSLV pacing. Additionally, techniques are described for sorting the order by which LV sites are to be paced during MSLV pacing. Furthermore, techniques are described for detecting and addressing circumstances where AV/PV delays are longer than corresponding AR/PR delays during MSLV.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 12, 2016
    Assignee: PACESETTER, INC.
    Inventor: Xiaoyi Min
  • Patent number: 9387325
    Abstract: A system and method are provided for controlling stimulation of nervous tissue of a patient. The method comprises delivering a stimulation waveform to at least one electrode located proximate to nervous tissue of interest, the stimulation waveform including a series of pulses configured to excite at least one of A-beta (A?) fibers, A-delta (A?) fibers or C-fibers of the nervous tissue of interest, the stimulation waveform defined by therapy parameters. The method also provides sensing an evoked compound action potential (ECAP) signal from the nervous tissue of interest. The method also analyzes a frequency content of the ECAP signal to obtain ECAP frequency data indicative of activity by at least one type of nerve fibers from a group comprising A?, A? and C fibers. The method also determines the type of nerve fibers that were activated by the stimulation waveform based on the ECAP frequency data.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 12, 2016
    Assignee: PACESETTER, INC.
    Inventors: Xiaoyi Min, Melanie Goodman Keiser, Wenbo Hou, Bruce A. Morley