Abstract: Systems and methods are provided for detecting the orientation and/or movement of a patient having an implantable cardiac stimulation device and evaluating whether a change in the patient's cardiac activity can be at least in part due to a change in the patient's orientation. In one particular embodiment, signals from an orientation sensor and/or a pressure sensor are evaluated to determine static positional orientation of the patient and determine based on the static orientation whether the patient's cardiac activity is abnormal.
Type:
Grant
Filed:
October 24, 2007
Date of Patent:
May 20, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Xiaoyi Min, Laleh Jalali, Steve Koh, Gene A. Bornzin, Euljoon Park
Abstract: Techniques are provided for use with an implantable medical device for detecting breaches in lead insulation or other lead failures. In one example, bipolar impedance is measured along single-lead vectors (i.e. intra-lead vectors) of a right atrial (RA) lead and a right ventricular (RV) leads. Impedance is also measured along various cross-lead vectors (i.e. inter-lead vectors) between electrodes of the two leads. A derived impedance value is then determined from a combination of the measured impedance values, wherein the derived impedance is sensitive to a shunt impedance arising from a breach within the RV lead. A lead breach is then detected relatively early based on the derived impedance by detecting a significant deviation in derived impedance over time. Unipolar impedance measurements are used to confirm the breach.
Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
Type:
Application
Filed:
October 30, 2012
Publication date:
May 15, 2014
Applicant:
PACESETTER, INC.
Inventors:
Brian J. Wenzel, Taraneh Ghaffari Farazi
Abstract: An RF protection circuit mitigates potentially adverse effects that may otherwise result from electromagnetic interference (e.g., due to MRI scanning of a patient having an implanted medical device). The RF protection circuit may comprise a voltage divider that is deployed across a pair of cardiac electrodes that are coupled to internal circuitry of the implantable medical device. Each leg of the voltage divider may be referenced to a ground of the internal circuit, whereby the different legs are deployed in parallel across different circuits of the internal circuitry. In this way, when an EMI-induced (e.g., MRI-induced) signal appears across the cardiac electrodes, the voltages appearing across these circuits and the currents flowing through these circuits may be reduced. The RF protection circuit may be used in an implantable medical device that employs a relatively low capacitance feedthrough to reduce EMI-induced (e.g., MRI-induced) current flow in a cardiac lead.
Abstract: A method for use in an implantable medical device comprises the steps of monitoring respiration with an amplifier having a gain, generating a moving apneic threshold based on recent respiration cycles, accumulating differences between amplitudes of respiration cycles and the moving apnea detection threshold and comparing the accumulated differences against an apnea detection threshold to detect the onset of an episode of apnea. The method further comprises measuring respiration levels upon detecting the onset of apnea, confirming the episode of apnea based upon the respiration levels measured upon detecting the onset of apnea; and adjusting one of the gain of the amplifier and the apnea detection threshold so that the time from the detection of onset of apnea to the time of confirmation of the episode of apnea is within a predetermined time range following the detection of the onset of apnea.
Abstract: An implantable pulse generator includes a header, a can and a feedthru. The feedthru is mounted in a wall of the can and includes an electrically insulating core, a PCB, a shield, a chip capacitor, a power circuit and a ground circuit. A first side of the PCB abuts against the core and a second side of the PCB abuts against an edge of the shield. The chip capacitor is mounted on the second side of the PCB. The chip capacitor is enclosed in a volume defined by an interior of the shield and the second side of the PCB. A first electrical contact of the chip capacitor is electrically coupled to the power circuit, and a second electrical contact of the chip capacitor is electrically coupled to the ground circuit.
Abstract: A method for implanting an active fixation medical lead is disclosed herein. The lead may include a lead body distal end, a tissue fixation helical anchor and a structure. The tissue fixation helical anchor may be coupled to the lead body distal end and include a distal tip. The structure may be coupled to the lead body distal end and include a structure distal end including a first radiopaque marker. The structure may be biased to project the structure distal end near the distal tip. When the tissue fixation helical anchor is progressively embedded in the cardiac tissue, the cardiac tissue progressively displaces the structure distal end proximally.
Abstract: Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
Type:
Application
Filed:
January 3, 2014
Publication date:
May 1, 2014
Applicant:
PACESETTER, INC.
Inventors:
Yelena Nabutovsky, Gene A. Bornzin, Annapurna Karicherla, Nirav Dalal, Prashant Dinesh, Richard Samade, John W. Poore
Abstract: Techniques are provided for controlling therapy provided by the implantable cardiac stimulation device based on cardiogenic impedance. A cardiogenic impedance signal (or intracardiac impedance signal) is an impedance signal representative of the beating of the heart of the patient in which the device is implanted. The cardiogenic impedance signal is sensed along a sensing vector passing through at least a portion of the heart so that the sensed impedance is affected by the mechanical beating of the heart along that sensing vector. Pacing therapy is automatically and adaptively adjusted based on the cardiogenic impedance signal. For example, pacing timing parameters such as the atrioventricular delay and the inter-ventricular delay may be adjusted. Preferably, the adjustments are adaptive, i.e. the adjustments are performed in a closed-loop so as to adapt the adjustments to changes in the cardiogenic impedance signal so as to optimize therapy.
Type:
Grant
Filed:
November 9, 2006
Date of Patent:
April 29, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Dorin Panescu, Weiqun Yang, Louis Wong, Nils Holmstrom, Andre Walker
Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
Type:
Grant
Filed:
April 19, 2007
Date of Patent:
April 29, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
Abstract: Techniques are provided for use by implantable medical devices such as pacemakers or by external systems in communication with such devices. An intracardiac electrogram (IEGM) is sensed within a patient in which the device is implanted using a cardiac signal sensing system. Cardiac events of interest such as arrhythmias, premature atrial contractions (PACs), premature ventricular contractions (PVCs) and pacemaker mediated tachycardias (PMTs) are detected within the patient using event detection systems and then portions of the IEGM representative of the events of interest are recorded in device memory. Subsequently, during an off-line or background analysis, the recorded IEGM data is retrieved and analyzed to identify false detections. In response to false detections, the cardiac signal sensing systems and/or the event detection systems of the implantable device are selectively adjusted or reprogrammed to reduce or eliminate any further false detections, including false-positives or false-negatives.
Abstract: An implantable therapy lead includes a tubular body, an obturator, and a helical anchor electrode. The obturator is displaceably supported on a distal end of the tubular body between a recessed position and an extended position. When the obturator is in the extended position, the extreme distal tip of the tissue penetrating point of the helical anchor electrode contacts an outer surface of the obturator in a manner that prevents the extreme distal tip from being capable of tissue penetration significant enough to allow the helical anchor electrode to be screwed into the heart tissue. When the obturator is in the recessed position, the extreme distal tip no longer contacts the outer surface of the obturator and the extreme distal tip is positioned relative to the outer surface of the obturator so as to allow the extreme distal tip to penetrate the heart tissue.
Type:
Application
Filed:
October 18, 2012
Publication date:
April 24, 2014
Applicant:
PACESETTER, INC.
Inventors:
John W. Poore, Gene A. Bornzin, Zoltan Somogyi, Steven R. Conger
Abstract: An exemplary method includes detecting a change in state of a cardiac valve, detecting elongation of the left ventricle substantially along its major axis, determining a time difference between the change in state of the cardiac valve and the elongation of the left ventricle and, based at least in part on the time difference, deciding whether a diastolic abnormality exists. Other exemplary methods, devices, systems, etc., are also disclosed.
Type:
Grant
Filed:
November 10, 2010
Date of Patent:
April 22, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Jong Gill, Xiaoyi Min, Gene A. Bornzin, Eric Falkenberg
Abstract: Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
April 22, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Rupinder Bharmi, Taraneh Ghaffari Farazi, Ryan Rooke, Stuart Rosenberg, Kritika Gupta, Riddhi Shah, Gene A. Bornzin, Wenbo Hou, Laurence S. Sloman
Abstract: Techniques are described for use with an implantable cardiac stimulation device for performing paired/coupled pacing either alone or in conjunction with dynamic overdrive/underdrive pacing. In one technique, dynamic overdrive/underdrive pacing is delivered to the ventricles using paired pulses during an episode of atrial fibrillation. The use of paired pulses during dynamic ventricular overdrive/underdrive pacing helps lower and stabilize the ventricular rate to thereby reduce the risk of a ventricular arrhythmia. In another technique, the inter-pulse interval between paired pulses is optimized to lengthen the resulting refractory period to improve hemodynamics. Preferably, the optimized inter-pulse interval is used when applying dynamic ventricular overdrive/underdrive pacing with paired pulses so that the benefits of both techniques are obtained. The optimization technique is also applicable to setting the coupling interval for use with coupled pacing.
Type:
Grant
Filed:
October 30, 2007
Date of Patent:
April 22, 2014
Assignee:
Pacesetter, In.
Inventors:
Gene A. Bornzin, Joseph J. Florio, Peter Boileau
Abstract: A leadless implantable medical device (LIMD) comprises a housing configured to be implanted entirely within a single local ventricular chamber of the heart near a local apex region. A base on the housing is configured to be secured to tissue of interest, while a distal electrode is provided on the base and extends outward such that, when the device is implanted in the local chamber, the distal electrode is configured to engage the distal apex region at a distal activation site within the conduction network of the adjacent ventricular chamber.
Abstract: Techniques are provided for use with implantable medical devices to deliver packed pacing using split or bifurcated pulses of opposing polarity in different cardiac cycles. In one example, packed single-phase pulses are delivered by the device during a first cardiac cycle that serve to stimulate heart tissue. During the next cardiac cycle, packed single-phase stimulation pulse of opposing polarity are delivered that serve to recharge the pacing capacitors and also serve to stimulate heart tissue. By separating the pulses into separate cardiac cycles, near simultaneous multisite packed stimulation can be achieved within each cardiac cycle while providing for charge balancing and without interfering with sensing. Non-packed pacing with bifurcated pulses is also described.
Abstract: Techniques are provided for use with implantable medical devices to deliver paired or coupled postextrasystolic potentiation (PESP) pacing using split or bifurcated anodic and cathodic pulses. In a paired pacing example, a single-phase anodic pulse is delivered by the device that has sufficient amplitude to depolarize and contract myocardial tissue. During or just following a subsequent relative refractory period, a single-phase cathodic stimulation pulse is delivered that has sufficient amplitude to depolarize but not contract myocardial tissue, i.e., the cathodic pulse provides for PESP. In a coupled pacing example, the single-phase anodic pulse is delivered during or just following the relative refractory period of a first cardiac cycle; whereas the single-phase cathodic pulse is delivered during or immediately following the relative refractory period of the next consecutive cardiac cycle.
Abstract: A leadless intra-cardiac medical device (LIMD) configured to be implanted entirely within a heart of a patient includes a housing configured to be securely attached to an interior wall portion of a chamber of the heart, and a stabilizing intra-cardiac (IC) device extension connected to the housing. The stabilizing IC device extension may include a stabilizer arm, and/or an appendage arm, or an elongated body or a loop member configured to be passively secured within the heart.
Type:
Grant
Filed:
January 17, 2012
Date of Patent:
April 15, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Gene A. Bornzin, Xiaoyi Min, John W. Poore, Zoltan Somogyi, Didier Theret
Abstract: Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.