Abstract: Embodiments of the present invention generally pertain to implantable medical devices, and methods for use therewith, that detect exposure to magnetic fields produced by magnetic resonance imaging (MRI) systems. In accordance with specific embodiments, a sensor output is produced using an implantable sensor that is configured to detect acceleration, sound and/or vibration, but is not configured to detect a magnetic field. Such a sensor can be an accelerometer sensor, a strain gauge sensor or a microphone sensor, but is not limited thereto. In dependence on the produced sensor output, there is a determination whether of whether the IMD is being exposed to a time-varying gradient magnetic field from an MRI system. In accordance with certain embodiments, when there is a determination that the IMD is being exposed to a time-varying gradient magnetic field from an MRI system, then a mode switch to an MRI safe mode is performed.
Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial mechanical stability based on a signal that is indicative of mechanical functioning of a patient's heart for a plurality of consecutive beats. Certain embodiments use time domain techniques, while other embodiments use frequency domain techniques, to monitor myocardial mechanical stability. In certain embodiments the patient's heart is paced using a patterned pacing sequence that repeats every N beats. In other embodiments, the patient's heart need not be paced. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
Abstract: A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
Type:
Application
Filed:
May 31, 2012
Publication date:
December 5, 2013
Applicant:
PACESETTER, INC.
Inventors:
Edward Karst, Richard Samade, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret
Abstract: Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
Type:
Application
Filed:
May 31, 2012
Publication date:
December 5, 2013
Applicant:
PACESETTER, INC.
Inventors:
Rupinder Bharmi, Taraneh Ghaffari Farazi, Ryan Rooke, Stuart Rosenberg, Kritika Gupta, Riddhi Shah, Gene A. Bornzin, Wenbo Hou, Laurence S. Sloman
Abstract: An implantable device monitors and treats heart failure, pulmonary edema, and hemodynamic conditions and in some cases applies therapy. In one implementation, the implantable device applies a high-frequency multi-phasic pulse waveform over multiple-vectors through tissue. The waveform has a duration less than the charging time constant of electrode-electrolyte interfaces in vivo to reduce intrusiveness while increasing sensitivity and specificity for trending parameters. The waveform can be multiplexed over multiple vectors and the results cross-correlated or subjected to probabilistic analysis or thresholding schemata to stage heart failure or pulmonary edema. In one implementation, a fractionation morphology of a sensed impedance waveform is used to trend intracardiac pressure to stage heart failure and to regulate cardiac resynchronization therapy. The waveform also provides unintrusive electrode integrity checks and 3-D impedancegrams.
Type:
Grant
Filed:
November 9, 2006
Date of Patent:
December 3, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Weiqun Yang, Malin Ohlander, Louis Wong, Nils Holmstrom, Cem Shaquer, Euljoon Park, Dorin Panescu, Shahrooz Shahparnia, Andre Walker, Ajit Pillai, Mihir Naware
Abstract: A two-dimensional refractory period is defined in conjunction with the detection of cardiac events. Detection parameters associated with the two-dimensional refractory period may define a period of time during which a sensed cardiac signal is blanked or may define a period of time during which a given sensing threshold applies. The two-dimensional refractory period may be employed in atrial sensing to selectively blank far-field T-waves while enabling P-wave detection. The two-dimensional refractory period may be employed in ventricular sensing to selectively blank near-field T-waves while enabling detection of the QRS complex. The detection parameters associated with the two-dimensional refractory period may be adapted based on characteristics of previously detected cardiac signals.
Abstract: Techniques are provided for assessing left atrial pressure (LAP) based on atrial electrocardiac signal parameters, particularly intra-atrial conduction delay (IACD) and P-wave duration. In one example, a pacemaker or other implantable device senses an intracardiac electrogram (IEGM) or a subcutaneous electrocardiogram (ECG), from which IACD and P-wave duration are derived. The device tracks changes, if any, in the parameters. A significant increase in either IACD or P-wave duration is associated with an increase in LAP. In some examples, conversion factors are calibrated for use with a particular patient to relate IACD and/or P-wave duration values to LAP values to provide an estimate of actual LAP. The conversion factors are pre-calibrated using LAP measurements obtained using a wedge pressure sensor. In other examples, IACD and P-wave duration are instead used to confirm the detection of an elevation in LAP initially made using impedance signals. Other confirmation parameters are described as well.
Abstract: In accordance with an embodiment, an implantable lead assembly is provided comprised of an elongated body including a distal end, a proximal end having a header connector portion for coupling the elongated body with an implantable medical device, and an intermediate segment located between the distal and proximal ends. An intermediate electrode is disposed at the intermediate segment along the elongated body. A conductor is disposed in the elongated body and electrically coupled with the header connector portion and the intermediate electrode. The conductor wound within the intermediate segment to form first and second inductive coils that are axially separated from each other by an inter-coil gap, wherein the first and second inductive coils have different self-resonant frequencies.
Type:
Grant
Filed:
April 18, 2012
Date of Patent:
December 3, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Phong D. Doan, Xiaoyi Min, Virote Indravudh
Abstract: Methods and systems are provided to deliver a neural stimulation (NS) therapy utilizing a first NS operating configuration to assist anti-tachycardia pacing (ATP) therapy in response to a detected tachyarrhythmia. Before and after delivering of the NS therapy, characteristic values are measured for a rate-related physiologic characteristic (rate RPC) and a stability-related physiologic characteristic (stability RPC). The rate RPC is indicative of a frequency of a reentrant circuit within the tachyarrhythmia. The stability RPC is indicative of a hemodynamic stability of the reentrant circuit. The pre-NS and post-NS characteristic values for the rate and stability RPCs are analyzed to determine a rate RPC difference and a stability RPC difference. Different ATP therapies are delivered based on the type associated with the tachyarrhythmia, the rate RPC difference and the stability RPC difference.
Type:
Grant
Filed:
December 11, 2012
Date of Patent:
December 3, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Stuart Rosenberg, Taraneh Ghaffari Farazi, Rupinder Bharmi, Kyungmoo Ryu, Edward Karst, Yelena Nabutovsky, Allen Keel, Riddhi Shah, Fujian Qu, Ryan Rooke
Abstract: Embodiments of the present invention relate to implantable systems, and method for use therein, that can detect myocardial ischemic events. In accordance with specific embodiments of the present invention, short-term fluctuations in cardiac intervals that follow premature ventricular contractions (PVCs) are monitored. This allows myocardial ischemic events to be detected based on these monitored fluctuations. The cardiac intervals for which fluctuations are being monitored can be, for example, RR intervals. Alternatively, or additionally, short-term fluctuations in other types of cardiac intervals may be monitored. Such other cardiac intervals include, for example, PR intervals, PP intervals, QT intervals and RT intervals.
Abstract: A medical implantable lead to be inserted into a human or animal body and attached to an organ inside the body for monitoring and/or controlling the function of the organ has a header in a distal end, a fixation arrangement and an electrode arranged in the header. The fixation arrangement attaches the distal end of the lead to the organ and the electrode is arranged to transmit or receive electrical signals to or from the organ. The lead also has a connector in a proximal end that includes a connector pin and is adapted to be connected to a monitoring and/or controlling device, and an inner coil, which extends inside an outer casing of the lead and is adapted to transmit electrical signals between the monitoring and/or controlling device and the electrode. The inner coil is attached to the connector pin. The inner coil extends through a bore inside the connector pin and is attached to the connector pin in its proximal end. A method for manufacturing such a lead is also provided.
Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
Type:
Grant
Filed:
March 3, 2010
Date of Patent:
November 26, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
Abstract: A triggered mode pacing system enables dual chamber sensing. The system also determines whether a cardiac event is initially sensed in a first cardiac chamber or a second cardiac chamber. The system then triggers an output to the second cardiac chamber in response to sensing the cardiac event in the first cardiac chamber when the cardiac event was determined to have been initially sensed in the first cardiac chamber.
Abstract: Disclosed herein is a method of assembling an implantable medical lead configured to receive a stylet. The lead is provided with a tubular insulation layer, an electrode is disposed on the tubular insulation layer, an electrical conductor is routed through the tubular insulation layer, and a stylet stop is inserted into a distal end of the tubular insulation layer. The electrical conductor is directly and mechanically connected to the stylet stop and is in electrical communication with the electrode.
Abstract: An implantable medical device includes a lead, a pulse generator, a cardiac signal module, a fusion detection module and a rate modification module. The lead includes electrodes that are configured to be positioned within a heart to sense cardiac signals of the heart. The pulse generator delivers stimulus pulses to the heart through at least one of the electrodes. The cardiac signal module monitors the cardiac signals and directs the pulse generator to deliver one or more of the stimulus pulses to the heart at a stimulation rate based on the cardiac signals. The fusion detection module identifies a presence of fusion-based behavior of the heart that is associated with delivery of the one or more of the stimulus pulses. The rate modification module then adjusts the stimulation rate based on the presence of the fusion-based behavior.
Abstract: Techniques are provided for use with implantable cardiac stimulation devices equipped for multi-site left ventricular (MSLV) cardiac pacing. Briefly, intraventricular and interventricular conduction delays are detected for paced cardiac events. Maximum pacing time delays are determined for use with MSLV pacing where the maximum pacing time delays are set based on the conduction delays to values sufficient to avoid capture problems due to wavefront propagation, such as fusion or lack of capture. MSLV pacing delays are then set to values no greater than the maximum pacing delays and cardiac resynchronization therapy (CRT) is delivered using the MSLV pacing delays. In an example where an optimal interventricular pacing delay (VV) is determined in advance using intracardiac electrogram-based or hemodynamic-based optimization techniques, the optimal value for VV can be used as a limiting factor when determining the maximum MSLV pacing time delays.
Type:
Grant
Filed:
January 19, 2011
Date of Patent:
November 12, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Kyungmoo Ryu, Allen Keel, Heidi Hellman, Tomas Svensson
Abstract: Techniques are provided for use with an implantable medical device for delivering left atrial (LA) pacing to address Diastolic Heart Failure, also referred to as Heart Failure with Preserved Ejection Fraction. In one example, pulse delivery times are selected for delivery of LA pacing pulses sufficient so that activation of the LA occurs when LA pressure (LAP) is lower than would occur in the absence of LA pacing. The pulse delivery times and also set so that subsequent activation of the right ventricle (RV) occurs when LAP is lower than would occur in the absence of LA pacing. LA pacing then is delivered by the implanted device at the selected pulse delivery times to mitigate Diastolic Heart Failure or to address other conditions.
Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
Type:
Grant
Filed:
August 1, 2012
Date of Patent:
November 12, 2013
Assignee:
Pacesetter, Inc.
Inventors:
Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
Abstract: An implantable physiologic sensor assembly is configured to be implanted within a patient. The assembly includes a module that houses an internal operative chamber, and a flexible pressure-detecting member connected to the module. The module and the pressure-detecting member are separated before implantation into the patient. At least a first end of the pressure-detecting member is configured to be inserted into an artery of the patient and a second end of the pressure-detecting member is connected to the module. The module is configured to be subcutaneously positioned within the patient.
Type:
Application
Filed:
May 4, 2012
Publication date:
November 7, 2013
Applicant:
PACESETTER, INC.
Inventors:
Gene A. Bornzin, John W. Poore, Zoltan Somogyi
Abstract: Implantable systems, and methods for use therewith, enable the monitoring of a patient's electromechanical delay (EMD) and arterial blood pressure. Paced cardiac events are caused by delivering sufficient pacing stimulation to cause capture. A cardiogenic impedance (CI) signal, indicative of cardiac contractile activity in response to the pacing stimulation being delivered, is obtained. One or more predetermined features of the CI signal are detected, and a value indicative of the patient's EMD is determined by determining a time between a delivered pacing stimulation and at least one of the detected one or more features of the CI signal. The value indicative of EMD can be used to more accurately determine metrics indicative of pulse arrival time (PAT), which can be used to estimate arterial blood pressure.