Abstract: An implantable medical lead is disclosed herein. In one embodiment, the lead includes a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and include a coiled inductor including a first portion and a second portion at least partially magnetically decoupled from the first portion. The first portion may include a first configuration having a first SRF. The second portion may include a second configuration different from the first configuration. The second configuration may have a second SRF different from the first SRF. For example, the first SRF may be near 64 MHz and the second SRF may be near 128 MHz.
Type:
Grant
Filed:
October 30, 2008
Date of Patent:
January 21, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Xiaoyi Min, J. Christopher Moulder, Yong D. Zhao, Virote Indravudh, Ingmar Viohl
Abstract: A cardiac analysis system is provided that includes an implantable medical device (IMD), at least one sensor, and an external device. The IMD has electrodes positioned proximate to a heart that sense first cardiac signals of the heart and associated with a clinical ventricular tachycardia (VT) event and second cardiac signals associated with an induced VT event. The sensor measures first and second cardiac parameters of the heart associated with the clinical and induced VT events, respectively. The external device is configured to receive the first and second cardiac signals associated with the clinical and the induced VT events and the first and second cardiac parameters associated with the clinical and the induced VT events. The external device compares the first and second cardiac signals and compares the first and second cardiac parameters to determine if the clinical and induced VT events are a common type of VT event.
Type:
Grant
Filed:
June 22, 2010
Date of Patent:
January 21, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Michael E. Benser, Gene A. Bornzin, Euljoon Park, Kyungmoo Ryu, Michael Hardage
Abstract: A leadless intra-cardiac medical device includes a housing that is configured to be implanted entirely within a single local chamber of the heart. A first electrode is provided on the housing at a first position such that when the housing is implanted in the local chamber, the first electrode engages the local wall tissue at a local activation site within the conduction network of the local chamber. An intra-cardiac extension is coupled to the housing and configured to extend from the local chamber into an adjacent chamber of the heart. A stabilization arm of the intra-cardiac extension engages the adjacent chamber. A second electrode on the intra-cardiac extension engages distal wall tissue at a distal activation site within the conduction network of the adjacent chamber.
Type:
Grant
Filed:
January 17, 2012
Date of Patent:
January 21, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Gene A. Bornzin, Gabriel A. Mouchawar, Xiaoyi Min, John W. Poore, Edward Karst, Richard Samade, Zoltan Somogyi, Didier Theret
Abstract: A system for implanting an implantable medical device (IMD) within a patient may include a main handle assembly having proximal and distal ends, a device-connection control handle connected to the proximal end of the main handle assembly, an introducer connected to the distal end of the main handle assembly, and a connection tool extending from the introducer. The connection tool may include a device-engaging member configured to change at least one of shape or orientation to selectively connect to and disconnect from the IMD. The device-connection control handle may be operatively connected to the device-engaging member and the device-connection control handle may be configured to manipulate the device-engaging member between connected and disconnected states by changing the at least one of the shape or orientation.
Type:
Application
Filed:
July 12, 2012
Publication date:
January 16, 2014
Applicant:
PACESETTER, INC.
Inventors:
Zoltan Somogyi, Edward Karst, Gene A. Bornzin, John W. Poore, Richard Samade, Didier Theret
Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial electrical stability. A patient's heart is paced for a period of time using a patterned pacing sequence that repeats every N beats, and an electrical signal is obtained that is representative of a plurality of consecutive beats of the patient's heart while it is being paced using the patterned pacing sequence that repeats every N beats. Myocardial electrical stability is then analyzed using frequency domain techniques that are tailored to the patterned pacing sequence used to pace the patient's heart. In other embodiments, the patient's heart need not be paced. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
Abstract: A medical device is disclosed herein that is configured to engage and penetrate a pericardial sac. The device includes an outer tubular body, an inner tubular body, and a helical tissue engagement member. The outer tubular body includes a proximal end, a distal end and a lumen extending between the ends. The inner tubular body includes a proximal end and a distal end. The inner tubular body is located in the lumen of the outer tubular body. The proximal end of the inner tubular body is operably coupled to the proximal end of the outer tubular body. The distal end of the inner tubular body is extendable out of the distal end of the outer tubular body. The helical tissue engagement member is displaceable from a first position to a second position, the first position being in the lumen of the outer tubular body recessed relative to the distal end of the outer tubular body, and the second position extending out of the distal end of the outer tubular body.
Abstract: In an implantable medical device for monitoring glucose concentration in the blood, a blood-glucose concentration analysis is performed using correlations of blood-glucose concentration with measures of metabolic oxygen consumption including oxymetric, and/or temperature. Analysis of electrocardiographic data is used in a parallel method to detect and/or confirm the onset and/or existence and/or extent of hypoglycemia and/or hyperglycemia. Blood-glucose concentration calculation is enhanced by using the combination of the oxygen metabolism analysis and electrocardiographic analysis.
Type:
Grant
Filed:
April 30, 2009
Date of Patent:
January 14, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi, Euljoon Park, Eric Falkenberg, Michael E. Benser
Abstract: A method for detecting potential failures by a lead of an implantable medical device is provided. The method includes sensing a first signal over a first channel between a first combination of electrodes on the lead and sensing a second signal from a second channel between a second combination of electrodes on the lead. The method determines whether at least one of the first and second signals is representative of a potential failure in the lead and identifies a failure and the electrode associated with the failure based on which of the first and second sensed signals is representative of the potential failure. Optionally, when the first and second sensed signals are both representative of the potential failure, the method further includes determining whether the first and second sensed signals are correlated with one another. When the first and second sensed signals are correlated, the method declares an electrode common to both of the first and second combinations to be associated with the failure.
Type:
Grant
Filed:
February 4, 2013
Date of Patent:
January 7, 2014
Assignee:
Pacesetter, Inc.
Inventors:
Gene A. Bornzin, John W. Poore, Richard Williamson, Gabriel A. Mouchawar, Eric S. Fain
Abstract: A coating on at least a portion of an implantable medical device includes a polymer and an agent that inhibits the formation of biofilms. The agent inhibiting the formation of a biofilm includes a quorum sensing inhibitor (QSI), a biofilm dispersing agent (BDA) or both. The agent may also be delivered via an actuator associated with the implantable medical device.
Type:
Application
Filed:
June 28, 2012
Publication date:
January 2, 2014
Applicant:
PACESETTER, INC.
Inventors:
Richard Samade, Prashant Dinesh, Yelena Nabutovsky, Gene A. Bornzin, John W. Poore, Annapurna Karicherla, Nirav Dalal
Abstract: The device includes radio frequency (RF) communication components installed within a case of the device and an antenna with an inverted E shape mounted within a header of the device. The antenna has three branches extending from a main arm: a capacitive branch connecting one end of the main arm to the case; an RF signal feed branch connecting a middle portion of the main arm to the internal RF components of the device via a feedthrough; and an inductive branch connecting the opposing (far) end of the main arm to the case to provide a shunt to ground.
Type:
Application
Filed:
April 2, 2013
Publication date:
January 2, 2014
Applicant:
PACESETTER, INC.
Inventors:
Micah Meulmester, Reza Imani, Wisit Lim, Perry Li
Abstract: Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.
Abstract: The device includes radio frequency (RF) communication components installed within a case of the device and an antenna with an inverted E shape mounted within a header of the device. The antenna has three branches extending from a main horizontal arm: a capacitive branch connecting one end of the main arm to the case via a capacitive load; an RF signal feed branch connecting a middle portion of the main arm to the internal RF components of the device via a feedthrough; and an inductive branch connecting the opposing (far) end of the main arm to the case to provide a shunt to ground. The E-shaped configuration and the provision of capacitive loading allows for cancellation of inductance to bring the antenna into resonance and to provide optimal radiation efficiency as well as to provide for impedance with no reactive component.
Type:
Application
Filed:
June 29, 2012
Publication date:
January 2, 2014
Applicant:
PACESETTER, INC.
Inventors:
Perry Li, Gabriel A. Mouchawar, Jorge Amely-Velez, Reza Imani
Abstract: Systems and methods are provided for allowing an implantable medical device, such as pacemaker, to properly sense electrophysiological signals and hemodynamic signals within a patient during a magnetic resonance imaging (MRI) procedure. Systems and methods are also provided for allowing the implantable medical device to transmit the sensed data to an external monitoring system during the MRI procedure so that attending medical personnel can closely monitor the health of the patient and the operation of the implantable device during the MRI. These improvements provide the attending personnel with information needed to determine whether the MRI should be suspended in response to induced tachyarrhythmias or other adverse conditions within the patient.
Abstract: Methods, systems and devices are provided for reducing the amount of data, processing and/or power required to analyze hemodynamic signals such as photoplethysmography (PPG) signals, pressure signals, and impedance signals. In response to detecting a specific event associated with a cyclical body function, a hemodynamic signal is continuously sampled during a window following the detecting of the specific event, wherein the window is shorter than a cycle associated with the cyclical body function. The hemodynamic signal is then analyzed based on the plurality of samples. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract: A leadless implantable medical device (LIMD) includes a housing formed from a battery and an end cap. A proximal end of the end cap forms an LIMD proximal end and a distal end of the battery case forms an LIMD distal end. A non-conductive coupler mechanically secures a terminal end of the battery case to a mating end of the end cap, while maintaining the battery case and end cap electrically separated. A first electrode projects from the proximal end of the end cap. An intra-cardiac (IC) device extension projects from the distal end of the battery case. The extension includes a second electrode that is electrically connected to the battery case. The second electrode is located remote from the LIMD distal end. An electronics module is located within an internal cavity of the end cap and communicates with the first and second electrodes.
Type:
Application
Filed:
June 21, 2012
Publication date:
December 26, 2013
Applicant:
PACESETTER, INC.
Inventors:
Ali Dianaty, Gabriel A. Mouchawar, Gene A. Bornzin, John W. Poore, Xiaoyi Min, Zoltan Somogyi, Richard Williamson
Abstract: A delivery system for implanting a leadless cardiac pacemaker into a patient is provided. The cardiac pacemaker can include a docking or delivery feature having a through-hole disposed on or near a proximal end of the pacemaker for attachment to the delivery system. In some embodiments, the delivery catheter can include first and second tethers configured to engage the delivery feature of the pacemaker. The tethers, when partially aligned, can have a cross-sectional diameter larger than the through-hole of the delivery feature, and when un-aligned, can have a cross-sectional diameter smaller than the through-hole of the delivery feature. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
Abstract: Detecting patterns in sensed implantable medical device (IMD) data is described. One implementation involves an IMD that includes a data-driven pattern detection network embodied on the IMD to detect a pattern from sensed patient data. The IMD also includes one or more algorithms embodied on the IMD to utilize the pattern to effect patient therapy.
Abstract: A chamber or vasculature of a heart may be accessed via the pericardial space of the heart. Initially, the pericardial space may be accessed via a transmyocardial approach or a subxiphoid approach. A lead or other implantable apparatus may thus be routed into the pericardial space, through myocardial tissue and into the chamber or vasculature. The lead or other apparatus may be used to sense activity in or provide therapy to the heart.
Type:
Application
Filed:
August 20, 2013
Publication date:
December 19, 2013
Applicant:
PACESETTER, INC.
Inventors:
Yougandh Chitre, Gene A. Bornzin, John R. Helland, Eric Falkenberg, Kevin L. Morgan, Sheldon Williams, Michael Yang, Andrew W. McGarvey
Abstract: A capacitor assembly is configured for use with an implantable medical device (IMD. The capacitor assembly may include a stack assembly having at least one anode stack between outer cathodes, and a housing having a case secured to a lid. The case and the lid define an internal chamber that retains the stack assembly. One of the case or the lid comprises a folded double wall connected to a drawn end. A recessed area is defined between the folded double wall and the drawn end. A linear edge of the other of the case and the lid is retained within the recessed area.
Abstract: A triggered mode pacing system enables dual chamber sensing. The system also determines whether a cardiac event is initially sensed in a first cardiac chamber or a second cardiac chamber. The system then triggers an output to the second cardiac chamber in response to sensing the cardiac event in the first cardiac chamber when the cardiac event was determined to have been initially sensed in the first cardiac chamber.