Patents Assigned to Pacesetter
  • Patent number: 8521277
    Abstract: Embodiments of the present invention relate to monitoring a patient's atrial stretch, heart failure (HF) condition, and/or risk of atrial fibrillation (AF), as well as methods for estimating a change in at least one of a patient's left atrial pressure (LAP), pulmonary capillary wedge pressure (PCWP), and right pulmonary artery pressure (RPAP). Embodiments of the present invention also relate to selecting a pacing energy level. Such embodiments involve determining atrial evoked response metrics when a patient's atrium is paced, and monitoring changes in such metrics.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 27, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Taraneh Ghaffari Farazi, Fujian Qu
  • Patent number: 8521279
    Abstract: An implantable cardiac stimulation device provides measurement of intrinsic heart activity metrics while sustaining pacing of the heart. The device includes a pulse generator that delivers pacing pulses to a first chamber of corresponding chambers of a heart, and a sensing circuit that senses a conducted evoked response of a second chamber of the corresponding chambers of the heart in response to the pacing pulse to provide an electrical signal representing the conducted evoked response. The device further includes a measuring circuit that measures a metric of the electrical signal to approximate a corresponding metric of an intrinsic electrical feature of the second chamber.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 27, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Adam F. Atherton, Xing Pei
  • Patent number: 8517941
    Abstract: An implantable medical device, implantable cardiac stimulation device, implantable defibrillator or pacemaker provides continuous monitoring of blood-glucose concentration in the blood of a patient. Blood-glucose concentration and blood-glucose concentration trends are calculated by measuring changes in the hematocrit of the patient. An external blood-glucose monitor may be used to provide blood-glucose calibration values to the implantable device to enhance accuracy of blood-glucose concentration values. The implantable device compares the blood-glucose concentration and/or concentration trends with acceptable limits and generates appropriate warning signals. The implantable device may optionally control one or more therapeutic devices to maintain blood-glucose concentration within an acceptable range. The enhanced control of blood-glucose concentration reduces the risk of arrhythmia and enhances the effectiveness of cardiac pacing and/or defibrillation.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: August 27, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Brian Jeffrey Wenzel
  • Patent number: 8521304
    Abstract: An implantable lead includes a lead body having a proximal end portion and a distal end portion with a connector located at the proximal end and an electrode located at the distal end. The implantable lead further includes a coil conductor that has spiral sections wound within a lumen of the lead body and couples the lead connector to the electrode. The coil conductor has an insulation material provided on at least a segment of the coil conductor. The insulation material has a dielectric constant set such that the coil conductor forms a distributed band stop filter when exposed to a known RF magnetic field. The coil conductor comprises a filar wound into the spiral sections. The filar of the coil conductor has an insulation coating provided thereon with the insulation coating forming a dielectric layer between adjacent spiral sections of the filar.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: August 27, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Xiangqun Chen, Xiaoyi Min
  • Patent number: 8521267
    Abstract: A method and system are provided for trending a coronary burden such as an ischemic burden or acute myocardial infarction (AMI) for a patient. Trending provides obtaining cardiac data over a period of time, identifying the onset and the termination of coronary episodes based on a ST segment variation within the cardiac data, recording coronary burden information, and presenting the coronary burden information to a user. The coronary burden information may include the number of coronary episodes occurring over a period of time, the time duration of the coronary episodes, and the maximum ST segment variations for the coronary episodes that occur over a period of time.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 27, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Laleh Jalali, Jay Snell, Elizabeth Bacon, Katie Hoberman, Bing Zhu
  • Publication number: 20130218036
    Abstract: Systems and methods for determining whether there is a correlation between arrhythmias and myocardial ischemic episodes are provided. An implantable system (e.g., a monitor, pacemaker or ICD) is used to monitor for arrhythmias and to monitor for myocardial ischemic episodes. When such events are detected by the implantable system, the implantable system stores (e.g., in its memory) data indicative of the detected arrhythmias and data indicative of the detected myocardial ischemic episodes. Then, for each detected arrhythmia, a determination is made based on the data, whether there was a myocardial ischemic episode detected within a specified temporal proximity of (e.g., within a specified amount of time of) the arrhythmia. Where a myocardial ischemic episode occurred within the specified temporal proximity of an arrhythmia, data for the two events can be linked.
    Type: Application
    Filed: April 2, 2013
    Publication date: August 22, 2013
    Applicant: Pacesetter Inc.
    Inventor: Pacesetter Inc.
  • Publication number: 20130218029
    Abstract: A system and method is described to map the renal artery prior to an ablation in order to a-priori identify the location of the sympathetic nerves. In specific embodiments, the nerve modulating energy may be electrical or optical.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: PACESETTER, INC.
    Inventors: Martin Cholette, Gary R. Dulak
  • Patent number: 8515539
    Abstract: An implanted device is equipped with a flag that indicates to a remote monitoring unit that an event such as a patient medical emergency or device failure has occurred. The remote monitoring unit is configured in some embodiments to maintain a low power communication link with the implanted device when they are within range. When the flag indicates an event has occurred, the remote monitoring unit quickly downloads sensed data collected by the implanted device and transfers it over a network so that it can be utilized by a medical practitioner. The remote monitoring unit is further configured in some embodiments to query the implanted device at regular intervals. The remote monitoring unit may read a subset of the data stored by the implanted device and, based on that data, determine whether to complete a full or partial download.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Paul A. Levine
  • Patent number: 8509890
    Abstract: Various embodiments of the present invention are directed to, or are for use with, an implantable system including a lead having multiple electrodes implantable in a patient's left ventricular (LV) chamber. In accordance with an embodiment, the patients LV chamber is paced at first and second sites within the LV chamber using a programmed LV1-LV2 delay, wherein the LV1-LV2 delay is a programmed delay between when first and second pacing pulses are to be delivered respectively at the first and second sites within the LV chamber. Evoked responses to the first and second pacing pulses are monitored for, and one or more LV pacing parameter is/are adjusted and/or one or more backup pulse is/are delivered based on results of the monitoring.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 13, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Allen J. Keel, Kyungmoo Ryu, Stuart Rosenberg
  • Publication number: 20130204312
    Abstract: Techniques are provided for use by an implantable medical device for optimizing the amount of ventricular dyssynchrony induced within a patient during protective pacing. In one example, the device analyzes intracardiac electrogram signals to detect an ischemic event within the heart. The device then delivers pacing stimulus in accordance with adjustable pacing parameters to induce ventricular dyssynchrony within the heart and adjusts the pacing parameters within a range of permissible values to achieve a preferred degree of ventricular dyssynchrony within the patient, so long as there is no significant reduction in left ventricular pumping functionality. Preferably, the pacing parameters are adjusted to maximize or otherwise optimize the degree of dyssynchrony induced within the patient. If a significant reduction in LV pumping functionality is detected, the dyssynchrony-inducing pacing is preferably suspended to avoid any deterioration in the condition of the heart.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: PACESETTER, INC.
    Inventors: Jong Gill, Kwangdeok Lee, Kyungmoo Ryu, Gene A. Bornzin
  • Publication number: 20130204147
    Abstract: Atrial fibrillation (AF) is detected based on pulmonary artery pressure (PAP) data. In some embodiments, PAP data generated by a PAP sensor device implanted in or near the pulmonary artery of a patient is processed to determine whether the patient is suffering from AF. In some aspects, detection of AF is based on identifying cycle-to-cycle variations of one or more parameters derived from the PAP data.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: PACESETTER, INC.
    Inventors: Andreas Blomqvist, Michael E. Benser
  • Patent number: 8504153
    Abstract: Techniques are provided for estimating left atrial pressure (LAP) or other cardiac performance parameters based on measured conduction delays. In particular, LAP is estimated based interventricular conduction delays. Predetermined conversion factors stored within the device are used to convert the various the conduction delays into LAP values or other appropriate cardiac performance parameters. The conversion factors may be, for example, slope and baseline values derived during an initial calibration procedure performed by an external system, such as an external programmer. In some examples, the slope and baseline values may be periodically re-calibrated by the implantable device itself. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP or other cardiac performance parameters. Still further, techniques are described for estimating conduction delays based on impedance or admittance values and for tracking heart failure therefrom.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 6, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dan E. Gutfinger, Mihir Naware, Xiaoyi Min, Jeffery Siou, Anders Bjorling, Dorin Panescu
  • Patent number: 8504144
    Abstract: Techniques for detecting tachyarrhythmia and also for preventing T-wave oversensing use signals filtered by a narrowband bradycardia filter in combination with signals filtered by a narrowband tachycardia filter. A separate wideband filter may also be used.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: August 6, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Rupinder Bharmi, Jeffery D. Snell, Gene A. Bornzin, Joseph J. Florio, Peter Boileau
  • Patent number: 8504152
    Abstract: Techniques are provided for estimating left atrial pressure (LAP) or other cardiac performance parameters based on measured conduction delays. In particular, LAP is estimated based interventricular conduction delays. Predetermined conversion factors stored within the device are used to convert the various the conduction delays into LAP values or other appropriate cardiac performance parameters. The conversion factors may be, for example, slope and baseline values derived during an initial calibration procedure performed by an external system, such as an external programmer. In some examples, the slope and baseline values may be periodically re-calibrated by the implantable device itself. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP or other cardiac performance parameters. Still further, techniques are described for estimating conduction delays based on impedance or admittance values and for tracking heart failure therefrom.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 6, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dan E. Gutfinger, Mihir Naware, Xiaoyi Min, Jeffery Siou, Anders Bjorling, Dorin Panescu
  • Publication number: 20130193947
    Abstract: A high voltage resonant step-up convertor converts a lower voltage signal to a higher voltage signal. The converter may be used, for example, to supply power via electromagnetic coupling to an implantable medical device. In some embodiments, a power converter comprises a driver circuit and a resonant circuit. The resonant circuit generates a high voltage output signal at a selected frequency. The driver circuit is controlled by a low voltage signal and periodically generates a higher frequency signal (e.g., approximately twice the selected frequency) to drive the resonant circuit. In some embodiments, the driver circuit comprises another resonant circuit and a switching circuit. The switching circuit periodically pumps current to the other resonant circuit and isolates the two resonant circuits. The other resonant circuit periodically pumps current to the output resonant circuit.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: PACESETTER, INC.
    Inventors: John W. Poore, Gene A. Bornzin
  • Patent number: 8498707
    Abstract: An exemplary method for treating obesity includes calling for delivery of electrical energy to a vagal nerve, detecting pre-prandial activity and, in response to the detection of pre-prandial activity, calling for delivery of electrical energy to the stomach for a pre-determined amount of time to induce satiety. Various other technologies are also disclosed.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: July 30, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Martin Cholette
  • Patent number: 8498706
    Abstract: An exemplary method includes performing a capture threshold assessment using a bipolar electrode configuration, deciding if capture occurred for a maximum energy value of the capture threshold assessment and, if capture did not occur, then performing a lead impedance test for the lead associated with the bipolar electrode configuration. Such a test may aim to detect an insulation defect and/or a conductor defect. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: July 30, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, Robert E. Smith, Paul A. Levine
  • Publication number: 20130190645
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Application
    Filed: October 30, 2012
    Publication date: July 25, 2013
    Applicant: PACESETTER, INC.
    Inventor: Pacesetter, Inc.
  • Publication number: 20130184777
    Abstract: Techniques are provided for use by an implantable medical device for assessing and controlling concurrent anodal/cathodal capture. In one example, the device delivers bipolar pacing stimulus while sensing a bipolar intracardiac electrogram (IEGM) and while adjusting a magnitude of the pacing stimulus. The device analyzes the bipolar IEGM signals to detect an indication of activation representative of concurrent anodal and cathodal capture. Preferably, the pulse magnitude is set relative to the anodal/cathodal capture threshold based upon clinician programming in response to the needs of the patient. In this manner, concurrent anodal and cathodal capture can be selectively activated or deactivated based on clinician instructions received from a device programmer or other external programming device. Techniques exploiting both bipolar and unipolar IEGM signals to assess and control concurrent anodal/cathodal capture are also described.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: PACESETTER, INC.
    Inventors: Heidi Hellman, Kyungmoo Ryu
  • Publication number: 20130184545
    Abstract: Techniques are provided for detecting pulmonary congestion based on an increase in right ventricular (RV) stroke volume over left ventricular (LV) stroke volume. In one example, the device generates an index based on accumulated differences between RV stroke volume and LV stroke volume while RV stroke volume exceeds LV stroke volume, such that the index is indicative of an ongoing imbalance between RV and LV stroke volume. The index is compared to a suitable threshold to detect a severe imbalance indicative of pulmonary edema. Additionally, techniques are described for estimating RV and LV stroke volumes based on pulmonary artery pressure, left atrial pressure, aortic pressure, LV strain or on various intracardiac or extracardiac impedance measurements.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Applicant: PACESETTER, INC.
    Inventors: Andreas Blomqvist, Alex Soriano