Patents Assigned to Paul Scherrer Institut
  • Patent number: 10729921
    Abstract: A system for particle beam therapy has an adjustable gantry for beam delivery to a patient site. The gantry has a beam coupling section, a first beam bending section with beam deflection and/or focusing magnets. A beam transport section receiving the particle beam from the first beam bending section and guiding the particle beam to a second beam bending section. The beam exits at a window of a beam nozzle. A patient table/chair is rotatable in the horizontal plane or in a plane being parallel to the horizontal plane and optionally being adjustable vertically. The gantry is supported by a tilting mechanism allowing the gantry to be tilted vertically by an angle ?1?[?90°; +90°]. A rotation mechanism is disposed in a way that the second beam bending section and the beam nozzle are rotatable by an angle ?2?[?180°; +180°] around a direction given by the angle ?1.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: August 4, 2020
    Assignee: Paul Scherrer Institut
    Inventors: Jacobus Maarten Schippers, Alexander Gerbershagen
  • Patent number: 10675359
    Abstract: The present application relates to methods for the functionalization of immunoglobulins, in particular with drugs. Also disclosed herein are linking reagents, functionalized antibodies, pharmaceutical compositions, and method of treating disease and/or conditions.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 9, 2020
    Assignees: Innate Pharma, Paul Scherrer Institut
    Inventors: Patrick Dennler, Delphine Bregeon, Laurent Gauthier, François Romagné, Christian Belmant, Eliane Fischer, Roger Schibli
  • Patent number: 10638594
    Abstract: A compact, small foot print, light source based on electron beam acceleration for insertion devices in EUV range metrology and actinic mask inspection using coherent scattering methods includes spiral storage rings providing plane straight sections. A magnet structure generates emittance for brilliance and coherent light content. A booster feeds the storage ring by top-up injection and keeps electron beam intensity stable. A booster level below the storage ring receives the electron beam from a linear accelerator in a central booster area. The source fits into laboratories or maintenance areas. Injection, RF-acceleration, beam manipulating devices and large diagnostics systems are required once. Higher average currents stored in the spiral enhance central cone power. Bunches are limited by ion trapping and a gap clears ions. The current is increased in the spiral. Gain in central cone power increases 5 fold, assuming a gap size of half single storage ring circumference.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 28, 2020
    Assignee: Paul Scherrer Institut
    Inventors: Leonid Rivkin, Andreas Streun, Albin Wrulich
  • Patent number: 10514342
    Abstract: X-ray scattering imaging can provide complementary information about the unresolved microstructures of a sample. The scattering signal can be accessed with various methods based on coherent illumination, which span from self-imaging to speckle scanning. The directional sensitivity of the existing methods is limited to a few directions on the imaging plane and it requires the scanning of the optical components, or the rotation of either the sample or the imaging setup, if the full range of possible scattering directions is desired. A new arrangement is provided that allows the simultaneous acquisition of the scattering images in all possible directions in a single shot. This is achieved by a specialized phase grating and a device for recording the generated interference fringe with sufficient spatial resolution. The technique decouples the sample dark-field signal with the sample orientation, which can be crucial for medical and industrial applications.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: December 24, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Matias Kagias, Marco Stampanoni, Zhentian Wang
  • Patent number: 10463881
    Abstract: A movable gantry for delivery of a particle beam using beam scanning technique contains an inlet section for an accelerated particle beam having quadrupole magnets, first and second bending sections having dipole and quadrupole magnets for beam correction, a transfer section having quadrupole magnets for beam correction and a degrader and a last beam bending section having separate and/or combined dipole/quadrupole/higher order multipole magnets forming an achromatic section. All the magnets of the achromatic last bending section are located downstream of the degrader. Any dispersion in this achromatic last bending section is suppressed. A scanning section having two separate or one combined fast deflection magnets that deflect the beam at the iso-center in a direction perpendicular to the beam direction to perform lateral scanning is provided. A beam nozzle section is provided and has a beam nozzle.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: November 5, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Alexander Gerbershagen, David Meer, Jacobus Maarten Schippers
  • Patent number: 10444623
    Abstract: Methods and a system for scanning scattering contrast inspection for the identification of defects in an actual pattern block on a sample as compared to a desired pattern block. Most of the information in the reciprocal space (spatial frequency domain) is omitted in order to increase the throughput. That information in the reciprocal space is captured which gives the highest defect information, namely contrast signal between the defective and defect-free structure. Deviations from the expected diffraction pattern allow rapid identification of defects on the actual pattern. The first method learns the correct reconstructed diffraction image by comparing the repetitive pattern blocks. The second method focuses on the appearance of predictable defects in the spatial frequency domain of the reconstructed diffraction image thereby defining regions of interest where the defects materialize.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 15, 2019
    Assignee: Paul Scherrer Institut
    Inventor: Yasin Ekinci
  • Patent number: 10433799
    Abstract: Among the existent X-ray phase-contrast modalities, grating interferometry appears as a promising technique for commercial applications, since it is compatible with conventional X-ray tubes. However, since applications such as medical imaging and homeland security demand covering a considerable field of view, the fabrication of challenging and expensive large-area gratings would be needed. A scanning setup is a good solution, because it uses cheaper line detectors instead of large-area 2D detectors and would require smaller gratings. In this setup, the phase-retrieval using the conventional phase-stepping approach would be slow, so having a faster method to record the signals becomes fundamental. To tackle this problem, a scanning-mode grating interferometer configuration is used, in which a grating is tilted to form Moire fringes perpendicular to the grating lines. The sample is then translated along the fringes, so each line detector records a different phase step for each slice of the sample.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: October 8, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Carolina Arboleda, Marco Stampanoni, Zhentian Wang
  • Patent number: 10434180
    Abstract: The present application relates to methods for the enzymatic functionalization of immunoglobulins, in particular with drugs. Also disclosed herein are linking reagents, functionalized antibodies, pharmaceutical compositions, and method of treating disease and/or conditions.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: October 8, 2019
    Assignees: INNATE PHARMA, PAUL SCHERRER INSTITUT
    Inventors: Delphine Bregeon, Patrick Dennler, Christian Belmant, Laurent Gauthier, François Romagne, Eliane Fischer, Roger Schibli
  • Publication number: 20190240360
    Abstract: A gastrin analogue shows high uptake in CCK-2 receptor positive tumors and simultaneously a very low accumulation in the kidneys. This is achieved by a mini-gastrin analogue PP-F11 having the formula: PP-F11-X-DGlu-DGlu-DGlu-DGlu-DGlu-DGlu-Ala-Tyr-Gly-Trp-Y-Asp-Phe-NH2, wherein Y is an amino acid replacing methionine and X is a chemical group attached to the peptide for diagnostic and/or therapeutic intervention at CCK-2 receptor relevant diseases. Very suitable compounds with respect to a high tumor to kidney ratio are mini-gastrin analogues with six D-glutamic acids or six glutamines. These compounds still possess a methionine which can be oxidized easily which is a disadvantage for clinical application under GMP due to the forms which may occur. The elimination of the methionine leads to a lower affinity to oxidation which in general favors the tumor-kidney-ratio. Ideally, the methionine is replaced by norleucine.
    Type: Application
    Filed: October 11, 2018
    Publication date: August 8, 2019
    Applicant: Paul Scherrer Institut
    Inventors: Martin Behe, Roger SCHIBLI
  • Patent number: 10357578
    Abstract: The radionuclide 43Sc is produced at commercially significant yields and at specific activities and radionuclidic purities which are suitable for use in radiodiagnostic agents including imaging agents. In a method, a solid target having an isotopically enriched target layer prepared on an inert substrate is positioned in a specially configured target holder and irradiated with a charged-particle beam of protons or deuterons. The beam is generated using an accelerator such as a biomedical cyclotron at energies ranging from 3 to about 22 MeV. The method includes the use of three different nuclear reactions: a) irradiation of enriched 43Ca targets with protons to generate the radionuclide 43Scin the nuclear reaction 43Ca (p,n)43Sc, b) irradiation of enriched 42Ca targets with deuterons to generate the radionuclide 43Sc in the nuclear reaction 42Ca(d,n)43Sc, and c) irradiation of enriched 46Ti targets with protons to generate the radionuclide 43Sc in the nuclear reaction 46Ti (p,a)43Sc.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: July 23, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Andreas Tuerler, Nicholas Van Der Meulen, Maruta Bunka
  • Patent number: 10356342
    Abstract: An X ray detector with single photon measurement capabilities includes a layer of photosensitive material and an N×M array of photo-detector diodes in the layer of photosensitive material. The photo-detector diodes have a bias potential interface and a diode output interface. An N×M array of high gain, low noise readout unit cells are assigned to the photo-detector diodes. Each readout unit cell has an input interface connecting the diode output interface to a high-gain charge-to-voltage amplifier with integration capacitors. The high-gain charge-to-voltage amplifier can switch between different gains. A comparator and a digital block monitors the charge of the integration capacitance and switches the gain depending from the monitored charge of the integration capacitance. The pixel detector provides the possibility of in pixel intermediate evaluation of an automatic gain switching circuit state to increase the dynamic range of the detector in case of quasi continuous incoming particle flux.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 16, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Dominic Greiffenberg, Aldo Mozzanica, Xintian Shi, Bernd Schmitt
  • Publication number: 20190184201
    Abstract: A system for particle beam therapy has an adjustable gantry for beam delivery to a patient site. The gantry has a beam coupling section, a first beam bending section with beam deflection and/or focusing magnets. A beam transport section receiving the particle beam from the first beam bending section and guiding the particle beam to a second beam bending section. The beam exits at a window of a beam nozzle. A patient table/chair is rotatable in the horizontal plane or in a plane being parallel to the horizontal plane and optionally being adjustable vertically. The gantry is supported by a tilting mechanism allowing the gantry to be tilted vertically by an angle ?1?[?90°; +90°]. A rotation mechanism is disposed in a way that the second beam bending section and the beam nozzle are rotatable by an angle ?2?[?180°; +180°] around a direction given by the angle ?1.
    Type: Application
    Filed: June 20, 2017
    Publication date: June 20, 2019
    Applicant: Paul Scherrer Institut
    Inventors: JACOBUS MAARTEN SCHIPPERS, ALEXANDER GERBERSHAGEN
  • Patent number: 10319576
    Abstract: A laser ablation cell (1) comprises a flow channel (11) having an essentially constant cross-sectional area so as to ensure a strictly laminar flow in the flow channel. A sample chamber (21) is provided adjacent to a lateral opening (14) of the flow channel. A laser beam (41) enters the sample chamber (21) through a lateral window (16) and impinges on a surface (24) of a sample (23) to ablate material from the sample. The sample may be positioned in such a distance from the flow channel that the laser-generated aerosol mass distribution has its center within the flow channel. This leads to short aerosol washout times. The laser ablation cell is particularly well suited for aerosol generation in inductively coupled plasma mass spectrometry (ICPMS), including imaging applications.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 11, 2019
    Assignees: ETH ZÜRICH, PAUL SCHERRER INSTITUT
    Inventors: Detlef Günther, Daniel Grolimund, Hao Wang
  • Patent number: 10201066
    Abstract: A compact light source based on electron beam accelerator technology includes a storage ring, a booster ring, a linear accelerator and an undulator for providing light having the characteristics for actinic mask inspection at 13.5 nm. The booster ring and the storage ring are located at different levels in a concentric top view arrangement in order to keep the required floor space small and to reduce interference effects. Quasi-continuous injection by enhanced top-up injection leads to high intensity stability and combats lifetime reductions due to elastic beam gas scattering and Touschek scattering. Injection into the storage ring and extraction from the booster ring are performed diagonal in the plane which is defined by the parallel straight section orbits of the booster ring and the storage ring. For the top-up injection from the booster ring into the storage ring two antisymmetrically arranged Lambertson septa are used.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: February 5, 2019
    Assignee: Paul Scherrer Institut
    Inventors: Yasin Ekinci, Leonid Rivkin, Albin Wrulich, Andreas Streun
  • Patent number: 10130724
    Abstract: A gastrin analog shows high uptake in CCK-2 receptor positive tumors and simultaneously a very low accumulation in the kidneys. This is achieved by a mini-gastrin analog PP-F11 having the formula: PP-F11-X-DGlu-DGlu-DGlu-DGlu-DGlu-DGlu-Ala-Tyr-Gly-Trp-Y-Asp-Phe-NH2, wherein Y is an amino acid replacing methionine and X is a chemical group attached to the peptide for diagnostic and/or therapeutic intervention at CCK-2 receptor relevant diseases. Very suitable compounds with respect to a high tumor to kidney ratio are mini-gastrin analogs with six D-glutamic acids or six glutamines. These compounds still possess a methionine which can be oxidized easily which is a disadvantage for clinical application under GMP due to the forms which may occur. The elimination of the methionine leads to a lower affinity to oxidation which in general favors the tumor-kidney-ratio. Ideally, the methionine is replaced by norleucine.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: November 20, 2018
    Assignee: Paul Scherrer Institut
    Inventors: Martin Behe, Roger Schibli
  • Patent number: 10132799
    Abstract: Provided is a method for the functionalization of immunoglobulins through the use of transglutaminase, including methods for screening functionalized antibodies for characteristics of interest, antibody compositions comprising a plurality of functionalized antibodies, and functionalized antibodies with rodent constant regions.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: November 20, 2018
    Assignees: INNATE PHARMA, PAUL SCHERRER INSTITUT
    Inventors: Christian Belmant, Delphine Bregeon, Patrick Dennler, Eliane Fischer, François Romagne, Roger Schibli, Laurent Gauthier
  • Patent number: 10042270
    Abstract: A reflective sample, such as a mask, is imaged in an optics system. A radiation source emits a light beam with relatively low coherence. A first focusing element focuses the beam before a mirror reflects the focused beam towards the sample at an incidence angle of between 2 and 25° A pinhole aperture plate upstream of the sample has a first aperture to focus and cut-off the beam diameter to form a more monochromatic beam. The sample is displaced by a mechanism in a direction perpendicular to the normal vector of the sample surface while it reflects the light beam. The reflected beam passes a second aperture in the pinhole aperture plate next to the first aperture on its way to a pixel detector. The second aperture limits the diameter of the reflected beam, thereby adjusting the diameter of the light beam before it reaches the pixel detector.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: August 7, 2018
    Assignee: Paul Scherrer Institut
    Inventors: Yasin Ekinci, Sangsul Lee
  • Patent number: 10036010
    Abstract: The present application relates to methods for the functionalization of antibodies using transglutaminase, in particular antibodies lacking Fc regions. Also disclosed herein are peptide tags for transglutaminase, linking reagents, functionalized antibodies, multi-specific antibodies, pharmaceutical compositions, and method of treating disease and/or conditions.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 31, 2018
    Assignees: INNATE PHARMA, PAUL SCHERRER INSTITUT
    Inventors: Eliane Fischer, François Romagne, Patrick Dennler
  • Patent number: 9922811
    Abstract: A laser ablation cell (1) comprises a flow channel (11) having an essentially constant cross-sectional area so as to ensure a strictly laminar flow in the flow channel. A sample chamber (21) is provided adjacent to a lateral opening (14) of the flow channel. A laser beam (41) enters the sample chamber (21) through a lateral window (16) and impinges on a surface (24) of a sample (23) to ablate material from the sample. The sample may be positioned in such a distance from the flow channel that the laser-generated aerosol mass distribution has its center within the flow channel. This leads to short aerosol washout times. The laser ablation as cell is particularly well suited for aerosol generation in inductively coupled plasma mass spectrometry (ICPMS), including imaging applications.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 20, 2018
    Assignees: ETH ZURICH, PAUL SCHERRER INSTITUT
    Inventors: Detlef Gunther, Daniel Grolimund, Hao Wang
  • Patent number: 9915708
    Abstract: An assembly of Hall sensors provides the following: the three averaged values for the magnetic field components are assigned to the same point in space, at the center of the Hall sensor assembly. This allows for the instantaneous measurement of the full field vector. With the appropriate electrical connections of the Hall elements from opposing surfaces of each pair, undesired planar Hall effect is practically cancelled out.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 13, 2018
    Assignee: Paul Scherrer Institut
    Inventors: Stephane Sanfilippo, Vjeran Vrankovic, Christina Wouters