Abstract: Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.
Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
Abstract: Catalysts and method of preparing the catalysts are disclosed. One of the catalysts includes a zeolite support, a Group VIII metal on the zeolite support, and at least two halides bound to the zeolite support, to the Group VIII metal, or to both, and can have an average crush strength greater than 11.25 lb based on at least two samples of pellets of the catalyst measured in accordance with ASTM D4179.
Abstract: A process comprising a heterogenous reaction between a solid metal organic framework supported heteropolyacid catalyst and a hydrocarbon feed to form a modified hydrocarbon stream. The modified hydrocarbon stream comprises essentially of C6+ hydrocarbons.
Type:
Grant
Filed:
October 13, 2021
Date of Patent:
May 9, 2023
Assignee:
Phillips 66 Company
Inventors:
Camille Malonzo May, Jose Edgar Mendez-Arroyo, Jianhua Yao
Abstract: A random copolymer comprising the monomer units A and B. In this random copolymer A comprises and B comprises Additionally, R1 R2, R3 and R4 are side chains independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, alkylthio, ester, ketone and aryl groups. X1 and X2 are different and at least one is a Cl and the other is selected from the group consisting of: H, F, CN, alkyl, alkoxy, ester, ketone, amide and aryl groups.
Type:
Grant
Filed:
April 23, 2021
Date of Patent:
May 2, 2023
Assignee:
Phillips 66 Company
Inventors:
Hualong Pan, Kathy Woody, Brian Worfolk, Taeshik Earmme
Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
Type:
Grant
Filed:
September 20, 2022
Date of Patent:
April 25, 2023
Assignee:
Chevron Phillips Chemical Company, LP
Inventors:
Vincent D. McGahee, Daniel M. Hasenberg
Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
Type:
Grant
Filed:
August 17, 2022
Date of Patent:
April 25, 2023
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
Abstract: A bi-modal radial flow reactor comprising a cylindrical outer housing surrounding at least five cylindrical, concentric zones, including at least three annulus vapor zones and at least two catalyst zones. The at least two catalyst zones comprise an outer catalyst zone and an inner catalyst zone. The at least three annulus vapor zones comprise an outer annulus vapor zone, a middle annulus vapor zone, and a central annulus vapor zone, wherein the central annulus vapor zone extends along a centerline of the bi-modal radial flow reactor. The outer catalyst zone is intercalated with the outer annulus vapor zone and the middle annulus vapor zone, and the inner catalyst zone is intercalated with the middle annulus vapor zone and the central annulus vapor zone. A removable head cover can be fixably coupled to a top of the cylindrical outer housing to seal a top of the bi-modal radial flow reactor.
Type:
Grant
Filed:
January 5, 2022
Date of Patent:
April 25, 2023
Assignee:
Chevron Phillips Chemical Company, LP
Inventors:
Vincent D. McGahee, Cameron M. Crager, William D. Treleaven
Abstract: A random copolymer comprising the monomer units A, B and C. In this random copolymer A comprises B comprises and C comprises an aryl group. Additionally, R1 R2, R3 and R4 are side chains independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, alkylthio, ester, ketone and aryl groups. X1 and X2 are independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, ester, ketone, amide and aryl groups.
Type:
Grant
Filed:
April 23, 2021
Date of Patent:
April 25, 2023
Assignee:
Phillips 66 Company
Inventors:
Hualong Pan, Kathy Woody, Brian Worfolk, Taeshik Earmme
Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and 15-35 wt. % of a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a ratio of Mw/Mn from 2 to 5, a melt index less than 2 g/10 min, and a CY-a parameter at 190° C. from 0.35 to 0.7. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications. Further, methods for improving film Elmendorf tear strength also are described.
Type:
Grant
Filed:
June 16, 2022
Date of Patent:
April 25, 2023
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Jeremy M. Praetorius, Chung Ching Tso, Ashish M. Sukhadia, Yongwoo Inn, Qing Yang, John T. Blagg
Abstract: A random copolymer comprising the monomer units A and B. In this random copolymer A comprises and B comprises Additionally, R1 R2, R3 and R4 are side chains independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, alkylthio, ester, ketone and aryl groups. X1 and X2 are independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, ester, ketone, amide and aryl groups.
Type:
Grant
Filed:
April 23, 2021
Date of Patent:
April 18, 2023
Assignee:
Phillips 66 Company
Inventors:
Hualong Pan, Kathy Woody, Brian Worfolk, Taeshik Earmme
Abstract: Disclosed herein are processes and reaction systems for controlling a temperature of an oligomerization reaction zone using a heat exchange system.
Abstract: A closed-loop nitrogen transport system including a first transfer line configured for nitrogen pressure conveyance of a polymer fluff from at least one upstream vessel to at least one downstream vessel, a second transfer line configured to return a nitrogen gas stream comprising primarily nitrogen from the at least one downstream vessel to the at least one upstream vessel, a conveyor blower operable to provide flow throughout the closed loop, and a treatment unit operable to remove hydrocarbons from at least a portion of the nitrogen gas stream comprising primarily nitrogen, to provide a purified nitrogen stream.
Type:
Grant
Filed:
June 16, 2020
Date of Patent:
April 11, 2023
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Lei Ji, Gregory G. Hendrickson, Robert R. McElvain, Steven D. Bridges, Jennifer F. Drew
Abstract: A process includes periodically or continuously introducing an olefin monomer and periodically or continuously introducing a catalyst system or catalyst system components into a reaction mixture within a reaction system, oligomerizing the olefin monomer within the reaction mixture to form an oligomer product, and periodically or continuously discharging a reaction system effluent comprising the oligomer product from the reaction system. The reaction system includes a total reaction mixture volume and a heat exchanged portion of the reaction system comprising a heat exchanged reaction mixture volume and a total heat exchanged surface area providing indirect contact between the reaction mixture and a heat exchange medium. A ratio of the total heat exchanged surface area to the total reaction mixture volume within the reaction system is in a range from 0.75 in?1 to 5 in?1, and an oligomer product discharge rate from the reaction system is between 1.0 (lb)(hr?1)(gal?1) to 6.0 (lb)(hr?1)(gal?1).
Abstract: A cathode in a solid oxide fuel cell containing AgPrCoO3. The operating temperature range of the cathode is from about 400° C. to about 850° C.
Abstract: A solid oxide fuel cell comprising an anode layer, an electrolyte layer, and a two phased cathode layer. The two phased cathode layer comprises praseodymium and gadolinium-doped ceria. Additionally, the solid oxide fuel cell does not contain a barrier layer.
Type:
Grant
Filed:
May 5, 2021
Date of Patent:
April 4, 2023
Assignee:
Phillips 66 Company
Inventors:
Ye Lin, Ying Liu, Matthew Lundwall, James A. Enterkin
Abstract: Pyrrole compounds are produced by contacting a furan compound, a solid acid catalyst, and water to form a reaction mixture containing a ?-dicarbonyl compound, and then contacting the ?-dicarbonyl compound with ammonia or an ammonium salt to form a reaction product mixture containing the pyrrole compound. A representative pyrrole compound that can be synthesized using these processes is 2,5-dimethylpyrrole.
Abstract: Processes for cracking an alkane reactant to form a lower aliphatic hydrocarbon product and for converting an alkane reactant into a higher aliphatic hydrocarbon product are disclosed, and these processes include a step of contacting the alkane reactant with a supported chromium (II) catalyst. In addition to the formation of various aliphatic hydrocarbons, such as linear alkanes, branched alkanes, 1-alkenes, and internal alkenes, aromatic hydrocarbons and hydrogen also can be produced.
Type:
Grant
Filed:
June 23, 2022
Date of Patent:
March 14, 2023
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Carlos A. Cruz, Max P. McDaniel, Masud M. Monwar, Jared Barr
Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of impregnating the bound zeolite base with a transition metal precursor in a solvent composition containing water and from about 5 wt. % to about 50 wt. % of a C1 to C3 alcohol compound, a chlorine precursor, and a fluorine precursor. The resultant supported catalysts have improved catalyst activity and selectivity, as well as lower fouling rates in aromatization reactions.
Abstract: A process and system for the conversion of a feedstock comprising C3-C5 light alkanes to a C5+ hydrocarbon product, for example, a BTX-rich hydrocarbon product, by performing the alkane activation (first-stage) and the oligomerization/aromatization (second-stage) in separate stages, which allows each conversion process to occur at optimal reaction conditions thus increasing the overall hydrocarbon product yield. The alkane activation or first-stage is operated at a higher temperature than the second-stage since light alkanes are much less reactive than light olefins. Since aromatization of olefins is more efficient at higher pressure, the second-stage is maintained at a higher pressure than the first-stage. Further, fixed-bed catalysts are used in each of the first-stage and the second-stage.
Type:
Grant
Filed:
October 21, 2020
Date of Patent:
March 7, 2023
Assignee:
Phillips 66 Company
Inventors:
Jianhua Yao, Hong Xie, Jonathan Marda, Dhananjay Ghonasgi, Sourabh Pansare