Abstract: Disclosed herein are barium hafnate comprising proton-conducting electrolytes for use in solid oxide fuel cells. The disclosed electrolytes are also useful for electrolysis operations and for carbon dioxide tolerance.
Type:
Grant
Filed:
June 3, 2021
Date of Patent:
November 8, 2022
Assignees:
Phillips 66 Company, Georgia Tech Research Corporation
Abstract: Reactor systems, reactor coolant systems, and associated processes for polymerizing polyolefins are described. The reactor systems generally include a reactor pipe and a coolant system, in which the coolant system includes a jacket pipe surrounding at least a portion of the reactor pipe to form an annulus therebetween, at least one spacer coupling the jacket to the reactor pipe, and a coolant which flows through the annulus to remove heat from the reactor pipe. At least one of the external surface of the reactor pipe, the internal surface of the jacket, and at least one spacer, are independently modified, for example by polishing, coating, or reshaping, to reduce the fluid resistance of the coolant flow through the annulus.
Type:
Grant
Filed:
May 3, 2019
Date of Patent:
October 25, 2022
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Anurag Gupta, Scott E. Kufeld, Larry W. Ezell, Robert R. McElvain, Robert F. Parrott
Abstract: A smart trailer system coupled to a trailer of a vehicle includes a sensor configured to measure a parameter of the trailer, a sensor interface board electrically coupled to the sensor and configured to retrieve the measured parameter, and a master controller communicatively coupled to the sensor interface board via a data bus.
Type:
Grant
Filed:
October 29, 2020
Date of Patent:
October 25, 2022
Assignee:
Phillips Connect Technologies, LLC
Inventors:
Adam Bean, Timothy Ronald Jackson, Douglas Chambers, Ruben Chicas, Robert Alexander Phillips, Thomas Begin
Abstract: This disclosure relates to the production of chemicals and plastics using pyrolysis oil from the pyrolysis of plastic waste as a co-feedstock along with a petroleum-based, fossil fuel-based, or bio-based feedstock. In an aspect, the polymers and chemicals produced according to this disclosure can be certified under International Sustainability and Carbon Certification (ISCC) provisions as circular polymers and chemicals at any point along complex chemical reaction pathways. The use of a mass balance approach which attributes the pounds of pyrolyzed plastic products derived from pyrolysis oil to any output stream of a given unit has been developed, which permits ISCC certification agency approval.
Type:
Grant
Filed:
September 28, 2021
Date of Patent:
October 25, 2022
Assignee:
Chevron Phillips Chemical Company, LP
Inventors:
Ronald G. Abbott, Scott G. Morrison, Steven R. Horlacher, Jamie N. Sutherland, Bruce D. Murray
Abstract: Catalyst systems containing a titanium alkoxymagnesium halide supported catalyst component can be used for the polymerization of olefins. The catalyst can be prepared from a microcrystalline solid alkoxymagnesium halide support having a lattice spacing in the 5 nm to 15 nm range.
Abstract: Described herein are pyrolysis systems and pyrolysis processes for achieving a lighter yield slate than provided in conventional pyrolysis systems. Aspects include: recycling a gaseous pyrolysis product into the pyrolysis reactor to enhance the mixing of the pyrolysis system reactants; installing a bottoms liquid recycle stream to better mix the pyrolysis system reactants; and/or recycling at least a portion of a heavy fraction of the gaseous pyrolysis reactor effluent from a condenser system into the pyrolysis reactor liquid. These improvements can enhance the economic viability of plastic wastes to liquid and gaseous hydrocarbon products which are used for making circular chemical and polymer products.
Abstract: A hydrogel comprising water, and a plurality of titanium-silica nanoparticle agglomerates, wherein each titanium-silica nanoparticle agglomerate is an agglomeration of titanium-silica nanoparticles, the agglomerates having an average titanium loading designated x with a coefficient of variation for the average titanium loading of less than about 1.0, wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
Type:
Grant
Filed:
November 3, 2021
Date of Patent:
October 18, 2022
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
Type:
Grant
Filed:
April 20, 2022
Date of Patent:
October 11, 2022
Assignee:
Chevron Phillips Chemical Company LP
Inventors:
Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
Abstract: Various embodiments described herein provide a fastener system having straight walled driving surfaces that provides a reliable stick fit feature, while also improving stability of engagement between the system components. A feature of the new system is to allow stick fit engagement of existing standard straight walled drivers in the new system.
Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
Abstract: A heater assembly (20) is configured to vaporize a liquid. The heater assembly (20) includes a substrate plate (26,28) and a heating element (24) supported on the substrate plate (26,28). The heating element (24) includes a layer of electrically conducting material. The heater assembly (20) further includes a plurality of channels (46) formed by the electrically conducting material. Each of the plurality of channels (46) is configured to operate in parallel. Each channel (46) has an inlet end and an outlet end. The inlet end is configured to receive the liquid and the outlet end is configured to discharge vapor. The substrate plate (26,28) and the heating element (24) form a multi-layer configuration.
Abstract: The present disclosure describes a fractional distillation tower that uses color sensing technology that provides nearly real time cutpoint analysis of high value products. With this information, the cutpoints may be aggressively shifted to a financially advantageous product slate and stay aggressive throughout each day rather than wait for a once or twice daily report of what products have been made and their analyses with respect to specifications.
Abstract: A method for traffic management of proprietary data, in a network system comprising a gateway and a sensor communicatively coupled to the gateway via a data bus, includes determining, by a processor of a bridging device, whether a dedicated pipeline for transmission to the gateway is available, in response to determining that the dedicated pipeline is available, transmitting, by the processor, a request for the dedicated pipeline, determining, by the processor, whether the dedicated pipeline has been established between the bridging device and the gateway, and in response to determining that the dedicated pipe has been established, requesting, by the processor, the proprietary data from the sensor, transmitting, by the processor, the proprietary data from the sensor to the gateway via the dedicated pipeline, and transmitting, by the processor, a dedicated pipeline release signal to the gateway indicating release of dedicated pipeline between the bridging device and the gateway.
Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Type:
Grant
Filed:
July 12, 2021
Date of Patent:
September 13, 2022
Assignee:
Chevron Phillips Chemical Company, LP
Inventors:
Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
Type:
Grant
Filed:
October 14, 2021
Date of Patent:
September 13, 2022
Assignee:
Chevron Phillips Chemical Company, LP
Inventors:
Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared L. Barr, Kathy S. Clear, William C. Ellis
Abstract: Redox flow battery efficiency and performance may be improved with a high energy density bipyridinium based ionic room-temperature liquid electrolyte. Current electrolytes require solvent to dissolve the redox-active material and a supporting electrolyte to maintain charge balance. A room temperature redox-active electrolyte having intrinsic charge balancing would not need a solvent to form a liquid and would therefore have a higher density of anions and cations involved with charge storage. As such, creating redox-active bipyridinium core ionic materials that are in a liquid form at room temperature or, more particularly, are liquids across the range at which a redox flow battery would operate permit smaller and less costly flow battery design than conventional flow batteries.
Type:
Grant
Filed:
December 16, 2020
Date of Patent:
September 6, 2022
Assignee:
Phillips 66 Company
Inventors:
James A. Suttil, Sharmila Samaroo, Neal D. McDaniel, Jeffrey H. Drese, Hongjin Tan
Abstract: A polymer comprising wherein Ar1 and Ar2 are optional and either the same or different and independently selected from an aryl group or an heteroaryl group. In this polymer, W is selected from the group consisting of: S, Se, O, and N-Q; and Q is selected from the group consisting of: a straight-chain or branched carbyl, silyl, or hydrocarbyl, a branched or cyclic alkyl with 1 to 30 atoms, a fused substituted aromatic ring, and a fused unsubstituted aromatic ring. Additionally, in the polymer, R4 and R5 are selected from the group consisting of: a straight-chain or branched carbyl, silyl, or hydrocarbyl, a branched or cyclic alkyl with 1 to 30 atoms, a fused substituted aromatic ring, and a fused unsubstituted aromatic ring; and x+y=1.
Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and 15-35 wt. % of a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a ratio of Mw/Mn from 2 to 5, a melt index less than 2 g/10 min, and a CY-a parameter at 190° C. from 0.35 to 0.7. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications. Further, methods for improving film Elmendorf tear strength also are described.
Type:
Grant
Filed:
March 25, 2019
Date of Patent:
August 30, 2022
Assignee:
Chevran Phillips Chemical Company LP
Inventors:
Jeremy M. Praetorius, Chung Ching Tso, Ashish M. Sukhadia, Yongwoo Inn, Qing Yang, John T. Blagg