Patents Assigned to Phillips
  • Patent number: 11557376
    Abstract: A process for producing liquid transportation fuels in a petroleum refinery while avoiding the usage of crude oil feed stock that characterized by a fouling thermal resistance having the potential to foul refinery processes and equipment. Spectral data selected from NIR, NMR or both is obtained and converted to wavelets coefficients data. A genetic algorithm (or support vector machines) is then trained to recognize subtle features in the wavelet coefficients data to allow classification of crude samples into one of two groups based on fouling potential. Rapid classification of a potential crude oil feed stock according to its fouling potential prevents the utilization of feed stocks characterized by increased fouling potential in a petroleum refinery to produce liquid transportation fuels.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 17, 2023
    Assignee: Phillips 66 Company
    Inventors: Ayuba Fasasi, Jinfeng Lai, David A. Henning, Franklin Uba
  • Patent number: 11548957
    Abstract: Apparatuses and processes that produce multimodal polyolefins, and in particular, polyethylene resins, are disclosed herein. This is accomplished by using two reactors in series, where one of the reactors is a multi-zone circulating reactor that can circulate polyolefin particles through two polymerization zones optionally having two different flow regimes so that the final multimodal polyolefin has improved product properties and improved product homogeneity.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: January 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joseph A. Curren, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Eric J. Netemeyer, Jamie N. Sutherland, Paul J. Deslauriers, Jeffrey S. Fodor
  • Patent number: 11548958
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand
  • Patent number: 11549748
    Abstract: A system including a hydrocarbon recovery system integrated with a fluff transfer system, the hydrocarbon recovery system comprising a purge column, a separator, a purge gas-hydrocarbon recovery unit, and a waste gas outlet line, and the fluff transfer system comprising a fluff transfer blower, and an extruder feed tank fluidly connected with the fluff transfer blower via a fluff transfer blower outlet line and fluidly connected with the purge column. The hydrocarbon recovery system can be integrated with the fluff transfer system via a purge column fluff transfer gas inlet line fluidly connecting a purge gas inlet of the purge column with the fluff transfer blower outlet line, such that a portion of the fluff transfer gas in the fluff transfer blower outlet line is introduced into the purge column as purge gas. Make-up gas to the fluff transfer system can come from the hydrocarbon recovery system.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: January 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Reza Khankal, Enrique Mancillas, Kamaljeet Kaur, Hetian Li
  • Patent number: 11547991
    Abstract: A process for activating a hydrogenation catalyst comprising nickel to produce a selective hydrogenation catalyst, comprising contacting the hydrogenation catalyst with a mixed gas comprising and hydrogen sulfide and periodically increasing the temperature of the mixed gas in increments until the mixed gas reaches a temperature that facilities the efficient catalytic hydrogenation of both acetylene and butadiene by the modified catalyst, while the modified catalyst is simultaneously characterized by low selectivity for the hydrogenation of ethylene. The disclosure further claims a process that utilizes the modified catalyst to selectively hydrogenate acetylene and butadiene contaminants in a raw light olefin stream produced by thermal cracking, thereby extending the useful catalytic lifespan of a downstream oligomerization catalyst that converts the light olefins stream to a liquid transportation fuel, or a blend stock thereof.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 10, 2023
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Daniel Kuehler
  • Patent number: 11542348
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 3, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11541367
    Abstract: Methods of reducing heat exchanger fouling rate or of producing polyolefins may include providing a first gas stream comprising a gas and entrained fine polyolefin particles to a gas outlet line; removing a portion of the entrained fine polyolefin particles from the gas outlet line to form a bypass stream; and providing the bypass stream to a bypass line comprising a bypass line inlet and a bypass line outlet. The bypass line inlet and outlet are located upstream and downstream of a first heat exchanger. The methods may further include providing at least a portion of the first gas stream to the first heat exchanger; and combining the bypass stream and a second gas stream at the bypass line outlet to form a combined gas stream comprising one or more olefins or paraffins. A temperature of the combined gas stream is below the dew point of the combined gas stream.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: January 3, 2023
    Assignee: Chevron Phillips Chemical Company
    Inventors: Ralph J. Price, Jeffrey S. Lowell
  • Patent number: 11530177
    Abstract: This disclosure provides processes for forming acrylic acid and other ?,?-unsaturated carboxylic acids and their salts, including catalytic processes, and catalyst systems for effecting the processes. For example, there is provided a catalyst system for producing an ?,?-unsaturated carboxylic acid or a salt thereof, the catalyst system comprising: (a) a transition metal precursor compound comprising a Group 8-11 transition metal and at least one first ligand; (b) optionally, at least one second ligand; and (c) an anionic polyaromatic resin with associated metal cations. The catalyst system can further comprise (d) an olefin; (e) carbon dioxide (CO2); and (f) a diluent. Methods of regenerating the anionic polyaromatic resin with associated metal cations are described.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 20, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Patent number: 11529617
    Abstract: Provided herein are catalyst supports, catalyst systems, and methods for making catalyst supports, catalyst systems, and performing chemical reactions with the catalyst systems. The catalyst supports include a zeolite and a binder including non-sodium counterions, such as ammonium counterions and/or potassium counterions. The catalyst systems include the catalyst supports and a catalytic material. The catalyst systems may be used to perform chemical reactions, including reactions of one or more hydrocarbons.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: December 20, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Ryan W. Snell
  • Patent number: 11518942
    Abstract: This disclosure relates to the production of chemicals and plastics using pyrolysis oil from the pyrolysis of plastic waste as a co-feedstock along with a petroleum-based or fossil fuel co-feed, or as a feedstock in the absence of a petroleum-based or fossil fuel co-feed. A mass balance accounting approach is employed to attribute the pounds of pyrolyzed plastic products derived from pyrolysis oil to any output stream of a given unit, which permits assigning circular product credit to product streams. In an aspect, the polymers and chemicals produced according to this disclosure can be certified under International Sustainability and Carbon Certification (ISCC) provisions as circular polymers and chemicals at any point along complex chemical reaction pathways.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: December 6, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald G. Abbott, Scott G. Morrison, Steven R. Horlacher, Jamie N. Sutherland, Bruce D. Murray, Jacob M. Hilbrich, Charles T. Polito
  • Patent number: 11512154
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: November 29, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11505513
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) an N2-phosphinyl bicyclic amidine chromium salt or (b) a chromium salt and an N2-phosphinyl bicyclic amidine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) an N2-phosphinyl bicyclic amidine chromium salt complex or (b) a chromium salt and an N2-phosphinyl bicyclic amidine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 22, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11505630
    Abstract: Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan ? at 0.1 sec?1 from 0.5 to 0.9 degrees, a tan ? at 100 sec?1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec?1 from 1.3×106 to 1×107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: November 22, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Yongwoo Inn, John R. Rathman, Youlu Yu, Ashish M. Sukhadia, Jay M. Chaffin
  • Patent number: 11499023
    Abstract: Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: November 15, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Lili Cui, Ashish M. Sukhadia, Vivek Rohatgi
  • Patent number: 11498041
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 15, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11491473
    Abstract: This disclosure provides for catalyst systems and processes for forming an ?,?-unsaturated carboxylic acid or a salt thereof. In an aspect, the catalyst system can comprise: a transition metal precursor comprising a Group 8-11 transition metal and at least one first ligand; optionally, at least one second ligand; an olefin; carbon dioxide (CO2); a diluent; and an oxoacid anion-substituted polyaromatic resin comprising a sulfonated polyaromatic resin, a phosphonated polyaromatic resin, a sulfinated polyaromatic resin, a thiosulfonated, or a thiosulfinated polyaromatic resin, and further comprising associated metal cations. Methods of regenerating the polyaromatic resin with associated metal cations are described.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Patent number: 11492430
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11492305
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) a bicyclic 2-[(phosphinyl)aminyl] cyclic imine chromium salt or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine chromium salt complex or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11492558
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: D969877
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: November 15, 2022
    Assignee: William Thomas Phillips, Inc.
    Inventor: William Thomas Phillips