Patents Assigned to Phillips
  • Patent number: 11291978
    Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of impregnating the bound zeolite base with the transition metal, fluorine, and high loadings of chlorine. The resultant high chlorine content supported catalysts have improved catalyst activity in aromatization reactions.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 5, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gabriela D. Alvez-Manoli
  • Publication number: 20220097149
    Abstract: A debris ejector for a drilling tool is disclosed. In some cases, the ejector may be provided, for example, as part of a tool assembly (e.g., where ejector is coupled with bit, or both a bit and cup). In an example, a tool includes a cup and a drill bit passing through an internal void of the cup. The cutting end of the bit extends out the open end of the cup, while an attachment end of the bit extends out the back of the cup. The tool further includes an ejector within the cup. The ejector spins with the bit and independently of the cup. In one example, the ejector includes ramped or angled wings that eject material within the cup. In another example, the ejector includes tapered wings with straight and/or angled walls that push material out of the cup through one or more holes of the cup.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 31, 2022
    Applicant: Phillips Screw Company
    Inventors: Scott M. Filion, Gary E. Dilling, Christopher M. Gallant, Carl Marabello, JR.
  • Patent number: 11289653
    Abstract: A method of reacting bis(R1) 5,5??-dibromo-3?,4?-difluoro-[2,2?:5?,2?:5?,2??-quaterthiophene]-3,3??-dicarboxylate and bis(R2) 5,5??-dibromo-3?,4?-difluoro-[2,2?:5?,2?:5?,2??-quaterthiophene]-3,3??-dicarboxylate to form the polymer: In this polymer R1, R2, R3, R4, R5 and R6 are independently selected from the group consisting of: a halogen, a substituted alkyl, an unsubstituted alkyl, a substituted aryl, an unsubstituted aryl, a substituted heteroaryl and an unsubstituted heteroaryl.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: March 29, 2022
    Assignee: Phillips 66 Company
    Inventors: Hualong Pan, Kathy A. Repa, Brian J. Worfolk, Alyssa Brooke Chinen-Mendez
  • Patent number: 11276855
    Abstract: Redox flow battery performance may be improved with a metal containing ionic liquid as a liquid electrolyte. Metal containing ionic liquids are liquids at all temperatures of interest and therefore do not need dilution. As such, voltage separation between the anolyte and catholyte may exceed 0.5 V and therefor rival current state-of-the-art energy storage technologies and with higher voltage separation may attain energy densities above 100 Wh/L.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 15, 2022
    Assignee: Phillips 66 Company
    Inventors: James Anthony Suttil, Sharmila K. Samaroo, Neal D. McDaniel, Jeffrey H. Drese, Alexander Zachariah Wilbee, Hongjin Tan
  • Patent number: 11273275
    Abstract: A system for adjusting extrinsic positive end expiratory pressure during an expiratory phase of a ventilator is provided. The system includes a computer system that comprises one or more physical processors programmed with computer program instructions which, when executed cause the computer system to: determine a respiratory reactance from airway flow information of the patient and airway pressure information of the patient, the airway flow information and airway pressure information of the patient being obtained from one or more sensors, and adjust the extrinsic positive end expiratory pressure during the expiratory phase of the ventilator such that the determined respiratory reactance falls within a defined respiratory reactance range.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: March 15, 2022
    Assignee: Koninklijke Phillips N.V.
    Inventors: Robert Romano, Peter Douglas Hill
  • Patent number: 11274178
    Abstract: A copolymer comprising a repeat unit A, wherein repeat unit A comprises a repeat unit B, wherein repeat unit B comprises and at least one optional repeat unit D, wherein repeat unit D comprises an aryl group. In this copolymer, X1, X2, X3, and X4 are independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, ester, ketone, amide and aryl groups and R1, R2, R3, R4, R5 and R6 are independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, alkylthio, ester, ketone and aryl groups.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 15, 2022
    Assignee: Phillips 66 Company
    Inventors: Kathy Woody, Laura Nielsen, Hualong Pan, Taeshik Earmme
  • Patent number: 11267914
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica-chromium nanoparticle agglomerates, wherein each titanium-silica-chromium nanoparticle agglomerate is an agglomeration of titanium-silica-chromium nanoparticles, the agglomerates having an average titanium penetration depth designated x with a coefficient of variation for the average titanium penetration depth of less than about 1.0 wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11266976
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11267919
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Patent number: 11267909
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Patent number: 11267908
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof; and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11260376
    Abstract: Catalysts and method of preparing the catalysts are disclosed. One of the catalysts includes a zeolite support, a Group VIII metal on the zeolite support, and at least two halides bound to the zeolite support, to the Group VIII metal, or to both, and can have an average crush strength greater than 11.25 lb based on at least two samples of pellets of the catalyst measured in accordance with ASTM D4179.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 1, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-Hsiang Wu, Joseph Bergmeister, III
  • Patent number: 11254761
    Abstract: A process and system for pre-polymerizing propylene are disclosed. A first catalyst suspension is formed by mixing catalyst particles with a hydrocarbon that is a saturated hydrocarbon or propylene. Various other catalyst components are added to the first catalyst suspension, and the first catalyst suspension is then pre-polymerized under pre-polymerization conditions to form a pre-polymerized catalyst suspension that is introduced to a polymerization reactor or a storage tank. The saturated hydrocarbon can be propane, mixed butanes, or mixture thereof.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 22, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Reza Khankal, Joel A. Mutchler, Bryan M. Garner, James E. Hein
  • Patent number: 11248749
    Abstract: In one embodiment, the method begins by flowing a product stream through an upstream pipeline comprising a first product stream. The product stream is then continuously analyzed with an automated analyze to produce data. The first product stream downstream is then directed downstream of the automated analyzer to a downstream first product stream pipeline. The method then changes the product stream flowing through the upstream pipeline from the first product stream to a second product stream without purging the first product stream from the upstream pipeline, thereby creating a transmix product stream within the upstream pipeline wherein the transmix product stream comprises a mixture of the first product stream and the second product stream. The data from the automated analyzer is then analyzed with an automatic splitter, wherein the product stream flowing through the upstream pipeline no longer matches the physical and/or chemical characteristics of the first product stream.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: February 15, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11251457
    Abstract: A redox flow battery is described that does not include an ion exchange resin such as a proton exchange membrane but rather uses a generally stationary separator liquid that separates the anolyte from the catholyte at immiscible liquid-liquid interfaces. Solvents and electrochemically active components of the anolyte and catholyte would not cross the liquid-liquid interfaces between the separator liquid and the anolyte and catholyte, but certain ions in each of the anolyte and catholyte would cross the interface during charging and discharging of the redox flow battery. The separator liquid comprises a relatively small total volume of liquid in such a flow battery arrangement as compared to the anolyte and catholyte. Suitable chemical options are described along with system options for utilizing immiscible phases.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: February 15, 2022
    Assignee: Phillips 66 Company
    Inventors: James Anthony Suttil, Hongjin Tan, Neal McDaniel, Sharmila Samaroo, Jeffrey H. Drese
  • Patent number: 11242416
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. The method further comprising drying the titanated silica support to form a pre-catalyst composition; contacting a chromium-containing compound with the silica support, the titanated silica support, the pre-catalyst composition, or combinations thereof; and calcining the pre-catalyst composition to form an olefin polymerization catalyst.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242417
    Abstract: A method for an olefin polymerization catalyst comprises contacting a silica support or a chromium-silica support with titanium to produce a Cr/Si—Ti catalyst. A titanium-containing solution is used to facilitate the association of titanium with the support, wherein the titanium-containing solution is formed by contacting a solvent, an amino acid, optionally a peroxide, optionally a carboxylate and a titanium-containing compound. A method for preparation of an olefin polymerization catalyst comprises contacting a chromium-silica support with the titanium-containing solution under conditions suitable to form a pre-catalyst composition and further processing the pre-catalyst composition to produce a Cr/Si—Ti catalyst.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242418
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 20 wt. % based upon a total weight of the silica within the pre-catalyst composition; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.01 wt. % to about 10 wt. % based upon a total weight of the silica within the pre-catalyst composition; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Publication number: 20220032362
    Abstract: A mold, punch and workpiece are provided. In a preferred embodiment, a tapering outer edge is provided, along with a plurality of rib sets arranged circumferentially about the outer edge, and a ramp. A ramp may be located to facilitate the removal of burrs. Various slot patterns may be provided or formed, including star-shapes/Torx® slots. Using the present invention, a driver bit may be more securely fit to the slot of a screw, for example, allowing the screw to be threaded into a machined part more securely and smoothly, reducing rocking, shaking or tilt.
    Type: Application
    Filed: October 18, 2021
    Publication date: February 3, 2022
    Applicant: Phillips Fastener, LLC
    Inventors: Michael J. Ross, Chen Hung Lin, Kuo Yung Yu
  • Patent number: 11235639
    Abstract: A vehicle includes an engine, a start-stop system configured to stop and restart operation of the engine in response to predetermined triggers, and an auxiliary air conditioning AC system including a controller communicably coupled to the start-stop system. The start-stop system is configured to provide a first indication to the auxiliary AC system indicating ignition of the engine and a second indication to the auxiliary AC system after stopping the engine. The auxiliary AC system is configured to turn off the auxiliary AC system in response to receiving the first indication and restart the auxiliary AC system in response to receiving the second indication.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 1, 2022
    Assignee: Phillips & Temro Industries, Inc.
    Inventors: Jeffrey James Martell, Eric Graham Ruggles, John David Sweazey