Patents Assigned to Photon, Inc.
  • Patent number: 11131545
    Abstract: An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises a first portion with silicon nitride (SiN) waveguides that constitute a rotation sensing element; and, a second portion with additional silicon nitride (SiN) waveguide-based optical components that constitute a front-end chip to launch light into and receive light from the rotation sensing element. The two portions can be stacked together to have a multi-layer configuration vertically coupled with each other. External elements (e.g., laser, detectors, phase shifter) may be made of different material platform than SiN and can be hybridly integrated to the SiN waveguide platform.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: September 28, 2021
    Assignee: Anello Photonics, Inc.
    Inventor: Mario Paniccia
  • Patent number: 11131441
    Abstract: A luminaire for providing configurable static lighting or dynamically-adjustable lighting. The luminaire uses an array of focusing elements that act on light provided via a corresponding array of sources or via an edge-lit lightguide. Designs are provided for adjusting the number of distinct beams produced by the luminaire, as well as the angular width, angular profile, and pointing angle of the beams. Designs are also provided for systems utilizing the adjustable luminaires in various applications.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: September 28, 2021
    Assignee: Glint Photonics, Inc.
    Inventors: Christopher Gladden, Andrew Kim, Peter Kozodoy, Barbara Kruse
  • Patent number: 11125862
    Abstract: A laser diode includes a semiconductor structure of a lower Bragg reflector layer, an active region, and an upper Bragg reflector layer. The upper Bragg reflector layer includes a lasing aperture having an optical axis oriented perpendicular to a surface of the active region. The active region includes a first material, and the lower Bragg reflector layer includes a second material, where respective lattice structures of the first and second materials are independent of one another. Related laser arrays and methods of fabrication are also discussed.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 21, 2021
    Assignee: Sense Photonics, Inc.
    Inventors: Scott Burroughs, Brent Fisher, James Carter
  • Patent number: 11119276
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: September 14, 2021
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Patent number: 11112308
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for anomalous gas concentration detection. A spectroscopic system, such as a wavelength modulated spectroscopy (WMS) system may measure gas concentrations in a target area. However, noise, such as speckle noise, may interfere with measuring relatively low concentrations of gas, and may lead to false positives. A noise model, which includes a contribution from a speckle noise model, may be used to process data from the spectroscopic system. An adaptive threshold may be applied based on an expected amount of noise. A speckle filter may remove measurements which are outliers based on a measurement of their noise. Plume detection may be used to determine a presence of gas plumes. Each of these processing steps may be associated with a confidence, which may be used to determine an overall confidence in the processed measurements/gas plumes.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: September 7, 2021
    Assignee: Bridger Photonics, Inc.
    Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
  • Patent number: 11105621
    Abstract: Measurement apparatuses and methods are disclosed for generating high-precision and -accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 31, 2021
    Assignee: Bridger Photonics, Inc.
    Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
  • Patent number: 11105899
    Abstract: A laser array includes a plurality of laser diodes arranged and electrically connected to one another on a surface of a non-native substrate. Respective laser diodes of the plurality of laser diodes have different orientations relative to one another on the surface of the non-native substrate. The respective laser diodes are configured to provide coherent light emission in different directions, and the laser array is configured to emit an incoherent output beam comprising the coherent light emission from the respective laser diodes. The output beam may include incoherent light having a non-uniform intensity distribution over a field of view of the laser array. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 31, 2021
    Assignee: Sense Photonics, Inc.
    Inventors: Scott Burroughs, Brent Fisher, James Carter, Russell Kanjorski
  • Patent number: 11082128
    Abstract: Embodiments relate to a bidirectional free space optical (FSO) communications system. Specifically, data-encoded FSO beams are transmitted and received between two terminals. A transmit (Tx) direction of a beam transmitted from the first terminal is dithered by a beam steering unit (BSU). As the dithered beam is received by the second terminal, the power levels of the beam are measured. The power levels are then encoded in a data-encoded FSO beam transmitted to the first terminal. This allows the first terminal to decode the received FSO beam and determine the power levels. The power levels allow the first terminal to determine Tx direction misalignments and adjust the Tx direction for the Tx beam sent to the second terminal. This process may be repeated to reduce Tx misalignments and may be performed by both terminals such that each terminal sends power level information to the opposite terminal.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 3, 2021
    Assignee: SA Photonics, Inc.
    Inventor: William C. Dickson
  • Publication number: 20210223691
    Abstract: A substrate of an optical electrical module is provided. The substrate includes a plurality of accommodating grooves and a reflective groove. The accommodating grooves respectively extend along a first direction. The reflective groove is connected with the accommodating grooves and extends along a second direction perpendicular to the first direction.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Applicant: Centera Photonics Inc.
    Inventors: Shang-Jen Yu, Chun-Chiang Yen
  • Patent number: 11058328
    Abstract: This invention relates to the means for detection of molecular and chemical matter utilizing multiple techniques covering electronics, optics, and imaging techniques. More particularly, this invention is related to detecting levels of certain molecules inside the body through non-invasive contact or non-contact with the body. More specifically, this invention is related to the means to detect levels of molecules associated with metabolic diseases, more particularly the early diagnosis of the disease, especially diabetes. This invention also relates to a medical device that utilizes electromagnetic waves of varying wavelengths and detects waves returned to the device.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: July 13, 2021
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 11061117
    Abstract: A laser array includes a plurality of laser emitters arranged in a plurality of rows and a plurality of columns on a substrate that is non-native to the plurality of laser emitters, and a plurality of driver transistors on the substrate adjacent one or more of the laser diodes. A subset of the plurality of laser emitters includes a string of laser emitters that are connected such that an anode of at least one laser emitter of the subset is connected to a cathode of an adjacent laser emitter of the subset. A driver transistor of the plurality of driver transistors is configured to control a current flowing through the string.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: July 13, 2021
    Assignee: Sense Photonics, Inc.
    Inventors: Scott Burroughs, Brent Fisher, James Carter
  • Patent number: 11044018
    Abstract: Embodiments of the disclosure pertain to an optical modulator including an m*n optical coupler, first and second waveguides coupled or connected to the m*n optical coupler, a first phase shifter coupled to the first waveguide, and first and second loop mirrors at respective ends of the first and second waveguides opposite from the m*n optical coupler. The m*n optical coupler is configured to combine substantially similar or identical continuous light beams (at least one of which may be phase-shifted) returned through the first and second waveguides by the first and second loop mirrors to form a modulated optical signal. A compound optical modulator, a modulated or modulatable laser, and methods of using and manufacturing the optical modulators, are also disclosed.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 22, 2021
    Assignee: Source Photonics, Inc.
    Inventors: Qiugui Zhou, Mark Heimbuch
  • Patent number: 11022762
    Abstract: An optical fiber connector configured to rotationally align a first optical fiber with a second optical fiber is provided. The connector can include at least two rotational alignment features. At least one of the two rotational alignment features can include at least one ferrule configured to hold at least the first optical fiber.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Chiral Photonics, Inc.
    Inventors: Jonathan Singer, Victor Il'ich Kopp, Christopher W. Draper, Zhou Shi, Norman Chao
  • Patent number: 11025032
    Abstract: A laser diode device includes: a first heat sink including a first mounting layer, in which the first mounting layer includes at least two mounting pads electrically isolated from one another; a second heat sink including a second mounting layer, in which the second mounting layer includes at least two mounting pads electrically isolated from one another; and a laser diode bar between the first heat sink and the second heat sink, in which a bottom electrical contact of the laser diode bar is mounted to the first mounting layer, and a top electrical contact of the laser diode bar is mounted to the second mounting layer.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Trumpf Photonics, Inc.
    Inventors: Thilo Vethake, Stefan Heinemann
  • Publication number: 20210159369
    Abstract: A light emitting device includes a wavelength conversion layer, at least one light emitting unit and a reflective protecting element. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light emitting unit has two electrode pads located on the same side of the light emitting unit. The light emitting unit is disposed on the upper surface of the wavelength conversion layer and exposes the two electrode pads. The reflective protecting element encapsulates at least a portion of the light emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light emitting unit.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Chin-Hua Hung, Long-Chi Du, Jui-Fu Chang, Po-Tsun Kuo, Hao-Chung Lee, Yu-Feng Lin
  • Patent number: 11009788
    Abstract: A method for manufacturing an optical electrical module includes steps as follow. Forming first patterns on a first substrate by a first mask, wherein an angle between a primary flat of the first substrate and an arrangement direction having a maximum number of first pattern units of the first mask is (?+90°*n), wherein ? is between 22° to 39°, and n is an integer. Subjecting the first substrate to a first patterning process using the first patterns as a mask to form accommodating grooves and a reflective groove connected with the accommodating grooves in the first substrate, wherein an extension direction of each of the accommodating grooves is perpendicular to an extension direction of the reflective groove.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 18, 2021
    Assignee: Centera Photonics Inc.
    Inventors: Shang-Jen Yu, Chun-Chiang Yen
  • Patent number: 11005565
    Abstract: Embodiments relate to a free space optical (FSO) communication terminal. The terminal includes an optical source and optics. The optical source can produce optical beams at different wavelengths. The optics direct optical beams in a direction towards a remote FSO communication terminal. A wavelength dependence of the optics results in a divergence of the optical beam that depends on a wavelength of the optical beam. A controller may control the wavelength of the optical beam produced by the optical source, thereby adjusting the divergence of the optical beam (e.g., according to an acquisition process or a tracking process).
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 11, 2021
    Assignee: SA Photonics, Inc.
    Inventors: Greg G. Mitchell, Dmitry V. Bakin, David A. Pechner
  • Publication number: 20210126140
    Abstract: Surface mount semiconductor devices and methods for fabricating surface mount semiconductor devices are disclosed. In particular, back-contact-only multijunction photovoltaic cells and the process flows for making such cells are disclosed. The surface mount multijunction photovoltaic cells include through-wafer-vias for interconnecting the front surface epitaxial layer to a contact pad on the back surface. Before etching the through-wafer-vias the substrate is thinned to less than 150 ?m. The through-wafer-vias are formed using a wet etch process that removes semiconductor materials non-selectively without major differences in etch rates between heteroepitaxial III-V semiconductor layers. Low stress passivation layers are used to reduce the thermo-mechanical stress of the semiconductor devices.
    Type: Application
    Filed: January 17, 2019
    Publication date: April 29, 2021
    Applicants: Array Photonics, Inc., Array Photonics, Inc.
    Inventors: Lan ZHANG, Ewelina LUCOW, Ligang GAO
  • Patent number: 10983273
    Abstract: The optical phased array may use a grating based emitter in order to emit light out of the plane of a PIC chip from an array of output waveguides. A longer grating allows for a larger aperture in the output waveguide dimension and allows for a small spot size. However, even for the relatively thick grating layers available in production foundries, the gratings still cause light to decay within less than 0.5 mm. To reduce the grating strength, some or all of the diffraction gratings may only be provided between the output waveguides, e.g. over trenches between the output waveguides, but not over top the output waveguides, whereby the periodicity only interacts with the weaker evanescent tails of the confined mode instead of the entire cross section of the output waveguides. By forming sufficiently narrow slots in the grating layer only down to the upper cladding layer, the diffraction gratings may be made extremely weak.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 20, 2021
    Assignee: Voyant Photonics, Inc.
    Inventor: Christopher T. Phare
  • Patent number: 10969548
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 6, 2021
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali