Patents Assigned to Photonics Systems, Inc.
  • Publication number: 20200412452
    Abstract: A method of interference suppression with intermodulation distortion mitigation includes processing an RF signal comprising an RF signal of interest and an RF interfering signal to produce a first and second RF drive signal each with a desired RF interference signal power and having a 90 degree relative phase. The first RF drive signal is imposed onto a first optical signal with a modulator to generate a first modulated optical signal so that the modulator has a large-signal behavior that is characterized by a Bessel function of the first kind J1(?), wherein the desired power at a frequency of the interference signal of the first drive signal is chosen to correspond to a zero of the Bessel function of the first kind J1(?).
    Type: Application
    Filed: June 28, 2020
    Publication date: December 31, 2020
    Applicant: Photonic Systems, Inc.
    Inventor: Edward I. Ackerman
  • Patent number: 10879950
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 29, 2020
    Assignee: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Publication number: 20200358485
    Abstract: A multiple-input multiple output transmit and receive system includes a first antenna that transmits a first signal at a channel frequency that propagates in a first path and that simultaneously receives a pilot signal at the channel frequency with the transmitting the first signal at the channel frequency, where the pilot signal propagates in a second path. A single-channel duplex transmit-receive system is coupled to an output of the first antenna. A processor is coupled to an output of the single-channel duplex transmit-receive system and configured to determine channel state information of the first path at the channel frequency using the received pilot signal.
    Type: Application
    Filed: January 16, 2019
    Publication date: November 12, 2020
    Applicant: Photonic Systems, Inc.
    Inventor: Charles H. Cox
  • Patent number: 10819401
    Abstract: A multiple-input multiple output transmit and receive system includes a first antenna that transmits a first signal at a channel frequency that propagates in a first path and that simultaneously receives a pilot signal at the channel frequency with the transmitting the first signal at the channel frequency, where the pilot signal propagates in a second path. A single-channel duplex transmit-receive system is coupled to an output of the first antenna. A processor is coupled to an output of the single-channel duplex transmit-receive system and configured to determine channel state information of the first path at the channel frequency using the received pilot signal.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: October 27, 2020
    Assignee: Photonic Systems, Inc.
    Inventor: Charles H. Cox
  • Publication number: 20200266851
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Applicant: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Publication number: 20200245187
    Abstract: A method of separating a desired signal from an undesired signal includes obtaining a total input signal comprising the desired signal and the undesired signal in a time domain occupying a time duration from time t1 to time t2 of a single symbol in the desired signal. A transform is performed of the total input signal wherein an output of the transform is a time domain signal representing the desired signal.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 30, 2020
    Applicant: Photonic Systems, Inc.
    Inventors: Edward I. Ackerman, Charles H. Cox
  • Patent number: 10708092
    Abstract: A power transfer electrical system includes an electrical signal source that generates a current at an output. An electrical load is electrically connected to the output of the electrical signal source. An output of a controllable voltage source is also electrically connected to the electrical load. The controllable voltage source generates a voltage that is proportional to the current generated by the electrical signal source. An input of a controller is electrically connected to the output of the electrical signal source and an output of the controller is electrically connected to a control input of the controllable voltage source. The controller generates a signal that controls the voltage generated by the controllable voltage source so that a desirable amount of power is transferred from the electrical signal source to the controllable voltage source.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: July 7, 2020
    Assignee: Photonic Systems, Inc.
    Inventor: Charles H. Cox
  • Patent number: 10651943
    Abstract: A linearized electro-optic modulator includes a substrate comprising a first Mach Zehnder interferometer comprising a first and second optical waveguide and a second Mach Zehnder interferometer comprising a first and a second optical waveguide. A signal electrode is positioned on the substrate to receive a modulation signal. First and second ground electrodes are positioned on the substrate and are electrically connected to ground potential. The signal electrode and the first and second ground electrodes are positioned so that an electric field generated by the signal electrode modulates both the first and second Mach Zehnder interferometers to generate a first and a second linearized modulated optical signal.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 12, 2020
    Assignee: Photonic Systems, Inc.
    Inventors: Edward I. Ackerman, Gary E. Betts, Charles H. Cox
  • Patent number: 10651886
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: May 12, 2020
    Assignee: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Patent number: 10623986
    Abstract: A method of separating a desired signal from an undesired signal includes obtaining a total input signal comprising the desired signal and the undesired signal in a time domain occupying a time duration from time t1 to time t2 of a single symbol in the desired signal. A transform is performed of the total input signal wherein an output of the transform is a time domain signal representing the desired signal.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 14, 2020
    Assignee: Photonic Systems, Inc.
    Inventors: Edward I. Ackerman, Charles H. Cox
  • Publication number: 20200103725
    Abstract: A photonically-sampled electronically-quantized analog-to-digital converter generates an optical signal comprising a series of optical pulses. The optical signal is split into a first and a second optical path. The split optical signal is detected in the first path and then the detected optical signal is converted to a reference digital signal. The split optical signal in the second path is modulated with an input RF signal and a plurality of demultiplexed RF-modulated optically-sampled signals is generated from the modulated optical signal. The plurality of demultiplexed RF-modulated optically-sampled signals is then pulse broadened, detected, and converted to a plurality of sampled-RF digital signals. The reference digital signal and the plurality of sampled-RF digital signals are digital signal processed to generate a digital representation of the input RF signal.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Applicant: Photonic Systems, Inc.
    Inventors: Gary E. Betts, Charles H. Cox
  • Patent number: 10539770
    Abstract: Techniques are disclosed for magnification compensation and/or beam steering in optical systems. An optical system may include a lens system to receive first radiation associated with an object and direct second radiation associated with an image of the object toward an image plane. The lens system may include a set of lenses, and an actuator system to selectively adjust the set of lenses to adjust a magnification associated with the image symmetrically along a first and a second direction. The lens system may also include a beam steering lens to direct the first radiation to provide the second radiation. In some examples, the lens system may also include a second set of lenses, where the actuator system may also selectively adjust the second set of lenses to adjust the magnification along the first or the second direction. Related methods are also disclosed.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: January 21, 2020
    Assignee: SUSS MICROTEC PHOTONIC SYSTEMS INC.
    Inventors: Yanrong Yuan, John Bjorkman, Paul Ferrari, Jeff Hansen
  • Patent number: 10514588
    Abstract: A photonically-sampled electronically-quantized analog-to-digital converter generates an optical signal comprising a series of optical pulses. The optical signal is split into a first and a second optical path. The split optical signal is detected in the first path and then the detected optical signal is converted to a reference digital signal. The split optical signal in the second path is modulated with an input RF signal and a plurality of demultiplexed RF-modulated optically-sampled signals is generated from the modulated optical signal. The plurality of demultiplexed RF-modulated optically-sampled signals is then pulse broadened, detected, and converted to a plurality of sampled-RF digital signals. The reference digital signal and the plurality of sampled-RF digital signals are digital signal processed to generate a digital representation of the input RF signal.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: December 24, 2019
    Assignee: Photonic Systems, Inc.
    Inventors: Gary E. Betts, Charles H. Cox
  • Publication number: 20190372616
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Applicant: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Publication number: 20190327067
    Abstract: A method of full-duplex cellular communications includes receiving a first signal transmitted by a first cellular device at a base station using a cellular uplink frequency in a cellular frequency band. A second signal is transmitted from the base station to the first cellular device using a cellular downlink frequency in the cellular frequency band simultaneously with the receiving the first signal transmitted by the first cellular device. A third signal is transmitted from the base station to a second cellular device using the cellular uplink frequency in the cellular frequency band simultaneously with the receiving the first signal transmitted by the first cellular device and simultaneously with the transmitting the second signal from the base station to the first cellular device.
    Type: Application
    Filed: October 17, 2017
    Publication date: October 24, 2019
    Applicant: Photonic Systems, Inc.
    Inventor: Charles H. Cox
  • Publication number: 20190302571
    Abstract: A photonically-sampled electronically-quantized analog-to-digital converter generates an optical signal comprising a series of optical pulses. The optical signal is split into a first and a second optical path. The split optical signal is detected in the first path and then the detected optical signal is converted to a reference digital signal. The split optical signal in the second path is modulated with an input RF signal and a plurality of demultiplexed RF-modulated optically-sampled signals is generated from the modulated optical signal. The plurality of demultiplexed RF-modulated optically-sampled signals is then pulse broadened, detected, and converted to a plurality of sampled-RF digital signals. The reference digital signal and the plurality of sampled-RF digital signals are digital signal processed to generate a digital representation of the input RF signal.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 3, 2019
    Applicant: Photonic Systems, Inc.
    Inventors: Gary E. Betts, Charles H. Cox
  • Patent number: 10425121
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 24, 2019
    Assignee: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Patent number: 10374656
    Abstract: A same-aperture any-frequency simultaneously transmit and receive (STAR) system includes a signal connector having a first port electrically coupled to an antenna, a second port electrically coupled to a transmit signal path, and a third port electrically coupled to receive signal path. The signal connector passes a transmit signal in the transmit signal path to the antenna and a receive signal in the receive signal path. A signal isolator is positioned in the transmit signal path to remove a residual portion of the receive signal from transmit signal path. An output of the signal isolator provides a portion of the transmit signal with the residual portion of the receive signal removed. A signal differencing device having a first input electrically coupled to the output of the signal isolator and a second input electrically coupled to the third port of the signal connector subtracts a portion of the transmit signal in the receive signal path thereby providing a more accurate receive signal.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: August 6, 2019
    Assignee: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Publication number: 20190229779
    Abstract: A multiple-input multiple output transmit and receive system includes a first antenna that transmits a first signal at a channel frequency that propagates in a first path and that simultaneously receives a pilot signal at the channel frequency with the transmitting the first signal at the channel frequency, where the pilot signal propagates in a second path. A single-channel duplex transmit-receive system is coupled to an output of the first antenna. A processor is coupled to an output of the single-channel duplex transmit-receive system and configured to determine channel state information of the first path at the channel frequency using the received pilot signal.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 25, 2019
    Applicant: Photonic Systems, Inc.
    Inventor: Charles H. Cox
  • Publication number: 20190115942
    Abstract: An electromagnetic interface having an impedance with a resistive and a reactive component generates an electromagnetic field in both the reactive near-field region and the radiating far-field. A sensing circuit generates voltage and/or current having at least one of real and imaginary components that are proportional to an electromagnetic field in at least one of the reactive near-field region and the radiating far-field region. An electromagnetic modifier minimizes the electromagnetic field in the reactive near-field region in response to the signal generated at the output of the electromagnetic sensor.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 18, 2019
    Applicant: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman