Patents Assigned to Photonics Systems, Inc.
  • Publication number: 20090274466
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Application
    Filed: June 12, 2009
    Publication date: November 5, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Publication number: 20090263081
    Abstract: A bi-directional signal interface includes a carrier signal source that generates a carrier traveling wave at an output. A first traveling wave structure includes a first and a second waveguide having an input that is coupled to the output of the carrier signal source. The first and second waveguide propagate the carrier traveling wave. A second traveling wave structure includes an outgoing signal port that receives an outgoing signal and a bi-directional signal port that receives an incoming electrical signal and provides the outgoing signal. The first and second traveling wave structures have an electromagnetic interaction region with a geometry that is chosen for a desired outgoing-to-incoming signal isolation. A detector having an input coupled to the output of the first traveling wave structure generates an electrical signal related to the incoming electrical signal.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Publication number: 20090247074
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Application
    Filed: May 22, 2009
    Publication date: October 1, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Patent number: 7561803
    Abstract: A signal interface comprises a non-reciprocal device having a first port that accepts a first electrical signal and a second port that accepts a second electrical signal. The non-reciprocal device passes the second electrical signal through the first port without a phase shift and passes the first electrical signal through the second port with a 180 degrees phase shift. An optical modulator receives an optical signal at an optical input port, a second signal at a first and a second electrical input port, the first electrical signal at a third electrical input port, and the phase-shifted first electrical signal from the non-reciprocal device at a fourth electrical input port. The optical modulator transmits the second electrical signal to the first port of the non-reciprocal device without a phase shift and modulates the first electrical signal on the optical signal and providing the modulated optical signal at an optical output port of the optical modulator.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: July 14, 2009
    Assignee: Photonic Systems, Inc.
    Inventors: William K. Burns, Charles H. Cox, III, Rod Waterhouse
  • Patent number: 7555219
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 30, 2009
    Assignee: Photonic Systems, Inc.
    Inventors: Charles Cox, Ed Ackerman
  • Publication number: 20090067771
    Abstract: A modulator includes an electro-optical substrate and a first and second waveguide formed of a doped semiconductor material positioned on a surface of an electro-optical substrate forming a slot therebetween. A doping level of the semiconductor material being chosen to make the first and second waveguide conductive. A dielectric material is positioned in the slot which increases confinement of both an optical field and an electrical field inside the slot. A refractive index of the semiconductor material and a refractive index of the dielectric material positioned in the slot being chosen to reduce the V?·L product of the modulator.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 12, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Jianxiao Chen, Charles Cox
  • Publication number: 20090060412
    Abstract: A photodetector includes an optical distribution device having an optical input that receives an input optical signal and an optical waveguide grating coupler that converts the input optical signal from a longitudinal direction radiation mode to a surface-emitted radiation mode and that distributes the optical signal along a length of the optical waveguide grating coupler and emits the distributed optical signal from the surface. An optical detector includes an optical input that is positioned to receive the distributed optical signal emitted from the optical distribution device along a length the optical waveguide grating coupler. The optical detector generates a traveling wave RF signal. The optical distribution device reduces the optical power density of the input optical signal, thereby avoiding local saturation and damage to the optical detector.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Jianxiao Chen, Charles Cox
  • Patent number: 7490998
    Abstract: An optical component package is disclosed. The package has a housing. The interior of the housing is adapted to house an optical component. The package includes at least two fiber optic connectors, each comprising an component side adapted to connect to the optical component and each having a pluggable exterior element. Each of the at least two fiber optic connectors are mounted in the housing with their component side accessible from the interior of the package and their pluggable exterior element accessible from the exterior.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: February 17, 2009
    Assignee: BTI Photonic Systems Inc.
    Inventors: Ahmad Atieh, John Mills
  • Patent number: 7457032
    Abstract: An arrangement has a WDT (Wavelength-Dependent Tap) coupled in an OCS (Optical Communication System) and an OPM (Optical Performance Monitoring) function coupled to the WDT. The WDT is adapted to receive from the OCS an input optical signal having noise and channels at respective channel wavelengths. The WDT couples to an output some of the input optical signal at the channel wavelengths and most of a noise power at wavelengths between the channel wavelengths, and couples a remaining portion of the input optical signal back into the optical communication system. The optical performance monitoring function determines a power characteristic of the input optical signal as a function of a power from the output. The power characteristic may be an OSNR (Optical Signal-to-Noise Ratio) determined as a function of a signal power and a noise power of the output optical signal.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: November 25, 2008
    Assignee: BTI Photonic Systems Inc.
    Inventors: Lijie Qiao, Paul J. Vella
  • Publication number: 20080227410
    Abstract: A signal interface includes a dual-drive device having a first and a second input port that receive an outgoing signal. One of the first and the second input ports also receive an incoming signal. The dual-drive device passes the incoming signal to an output port while isolating the outgoing signal from the incoming signal.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 18, 2008
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventor: Charles H. Cox
  • Patent number: 7405870
    Abstract: An optical amplifier system and controller and a method for automatically controlling the usable signal power of an optical amplifier are provided. The method differentiates between the total optical power that includes the amplified spontaneous emission (ASE), and the useful amplified optical signal power at the output of the amplifier. The optical amplifier system comprises an optical amplifier, a first and a second photodetector operable to measure the power of the input and output signals of the optical amplifier and an amplification controller with a control input. The amplification controller is operable to compensate for the ASE power when operating in automatic signal power control mode.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: July 29, 2008
    Assignee: BTI Photonic Systems Inc.
    Inventors: Lijie Qiao, Paul J. Vella
  • Patent number: 7400787
    Abstract: A modulator includes an interferometer waveguide structure formed on an electro-optical substrate, preferably a Z-cut lithium niobate or a Z-cut lithium tantalate. The substrate includes a domain inversion between a region near the first arm and a region near the second arm of the interferometer waveguide structure. In one example, two coplanar strip electrode structures, each extending near at least a portion of the first arm and the second arm, respectively, are electrically coupled to each other.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: July 15, 2008
    Assignee: Photonic Systems, Inc.
    Inventor: William K. Burns
  • Patent number: 7369290
    Abstract: Approaches to bias control are disclosed for an optical modulator that modulates an optical carrier with a data input signal. In one embodiment an electrical bias input signal provided to the modulator is adjusted based on a characteristic of the data input signal detected from the modulated optical output signal. Another embodiment injects an additive dither signal into an optical modulator receiving a data input signal having a modulation depth of at least on the order of 50%. These embodiments can obtain and maintain a correct bias point on a modulator's transfer function curve when the modulation signal has a modulation depth on the order of 100%.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: May 6, 2008
    Assignee: Photonic Systems, Inc.
    Inventors: Charles H. Cox, Edward I. Ackerman
  • Patent number: 7324268
    Abstract: An optical amplification apparatus is provided comprising a plurality of fiber amplification media segments which are concatenated in series wherein subsequent to each fiber amplification media segment one or more wavelengths is dropped so as to exploit a gain versus fiber amplification media physical length characteristic. By exploiting the gain versus fiber amplification media physical length characteristic in such a manner it is possible to achieve a substantially flat gain response for a multi-wavelength output of the optical amplification apparatus. Some embodiments of the invention combine noise suppression and additional gain flattening on one or more wavelengths. Embodiments of the optical amplification apparatus can be used in red-band wavelength range applications of coarse wavelength division multiplexing (CWDM). Some embodiments of the invention also provide that the optical amplification apparatus can be used as a hybrid dense wavelength division multiplexing (DWDM) and CWDM optical amplifier.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: January 29, 2008
    Assignee: BTI Photonic Systems Inc.
    Inventors: Lijie Qiao, Paul J. Vella
  • Publication number: 20070237441
    Abstract: An apparatus for determining V? of an optical modulator includes an RF source that generates a variable power RF modulation signal for modulating an optical modulator. An optical detector detects a modulated optical signal generated by the optical modulator and generates an electrical detection signal in response to the detected modulated optical signal. An RF power meter measures an RF detection signal power to determine a minimum RF detection signal power, an RF modulation signal power corresponding to the minimum RF detection signal power being used to calculate V? of the optical modulator.
    Type: Application
    Filed: April 4, 2007
    Publication date: October 11, 2007
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Harold V. Roussell, Edward I. Ackerman
  • Patent number: 7262902
    Abstract: An optical resonant modulator includes an optical ring resonator and an optical loop that is coupled to the optical ring resonator by two couplers. The optical ring resonator can have a hybrid design in which the ring resonator is formed on an electro-optically passive material and the optical loop is formed on an electro-optically active material. An amplification section can be inserted between the electro-optically passive and the electro-optically active sections. In analog applications, an optical resonator includes a Mach Zehnder interferometer section having an input and an output, with a feedback path coupling the output to the input. Applications of the optical modulator of the invention, and a method for modulating an optical signal also are disclosed.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: August 28, 2007
    Assignee: Photonic Systems, Inc.
    Inventors: William K. Burns, Joelle Prince, Edward Ackerman
  • Patent number: 7209501
    Abstract: In the system of the present invention, two DFB laser outputs are combined in a first stage to produce a beat signal. The two main channels interfere with each other to form beat signals. This combined signal is then used as the seed to create multi-channels through optical fiber non-linearity in a multiplier stage.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: April 24, 2007
    Assignee: Peleton Photonic Systems Inc.
    Inventors: Jidong Xu, Qi Yang Peng, Hanwu Hu, Nima Ahmadvand
  • Publication number: 20060228065
    Abstract: A modulator includes an interferometer waveguide structure formed on an electro-optical substrate, preferably a Z-cut lithium niobate or a Z-cut lithium tantalate. The substrate includes a domain inversion between a region near the first arm and a region near the second arm of the interferometer waveguide structure. In one example, two coplanar strip electrode structures, each extending near at least a portion of the first arm and the second arm, respectively, are electrically coupled to each other.
    Type: Application
    Filed: April 7, 2005
    Publication date: October 12, 2006
    Applicant: Photonic Systems, Inc.
    Inventor: William Burns
  • Patent number: 7058097
    Abstract: New systems and methods for wavelength locking for a class of multi-wavelength laser sources (MWLS) are provided. In this type of MWLS, the set of output wavelength channels are produced from a limited number of initial laser sources, such as a single laser or dual laser. In this invention, the initial lasers are locked based on the wavelengths of the outer channels in the set of output channels to provide tighter channel locking than that of a single laser source. This is mainly possible since the error in channel spacing caused by channel wavelength offset of the seed lasers is amplified by channel multiplication done in MWLS. This provides better resolution than applying wavelength locking to the seed lasers.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: June 6, 2006
    Assignee: Peleton Photonic Systems Inc.
    Inventor: Nima Ahmadvand
  • Publication number: 20060083456
    Abstract: An optical resonant modulator includes an optical ring resonator and an optical loop that is coupled to the optical ring resonator by two couplers. The optical ring resonator can have a hybrid design in which the ring resonator is formed on an electro-optically passive material and the optical loop is formed on an electro-optically active material. An amplification section can be inserted between the electro-optically passive and the electro-optically active sections. In analog applications, an optical resonator includes a Mach Zehnder interferometer section having an input and an output, with a feedback path coupling the output to the input. Applications of the optical modulator of the invention, and a method for modulating an optical signal also are disclosed.
    Type: Application
    Filed: October 20, 2004
    Publication date: April 20, 2006
    Applicant: Photonic Systems, Inc.
    Inventors: William Burns, Joelle Prince, Edward Ackerman