Patents Assigned to Renesas Technology
-
Publication number: 20080022052Abstract: There is provided a bus coupled multiprocessor capable of reducing the number of snooping processes of each of a plurality of processors (CPU) constituting the multiprocessor, whereby the performance of the CPU is improved and its power consumption is reduced. According to the present invention, each of the CPUs includes a register for storing a bit string containing a first bit indicating whether the snooping process is performed or not when each of the CPUs is in a predetermined operation mode, and a comparing unit for comparing the first bit stored in the register with mode information indicating the kind of the operation mode outputted when the predetermined CPU accesses the bus. The snooping process is selectively performed based on the result of comparison in the comparing unit.Type: ApplicationFiled: July 11, 2007Publication date: January 24, 2008Applicant: Renesas Technology Corp.Inventor: Mamoru Sakugawa
-
Patent number: 7321252Abstract: In order to provide a semiconductor IC unit such as a microprocessor, etc., which satisfies both fast operation and lower power consumption properties with its high quality kept, the semiconductor IC unit of the present invention is composed so as to include a main circuit (LOG) provided with transistors, which is formed on a semiconductor substrate, and a substrate bias controlling circuit (VBC) used for controlling a voltage to be applied to the substrate, and the main circuit includes switching transistors (MN1 and MP1) used for controlling a voltage to be applied to the substrate and control signals output from the substrate bias controlling circuit is entered to the gate of each of the switching transistors and the control signal is returned to the substrate bias controlling circuit.Type: GrantFiled: April 4, 2006Date of Patent: January 22, 2008Assignee: Renesas Technology CorporationInventors: Hiroyuki Mizuno, Koichiro Ishibashi, Takanori Shimura, Toshihiro Hattori
-
Patent number: 7321171Abstract: A barrier layer and a copper film are successively formed on a silicon oxide film including a groove for wiring in the silicon oxide film and a silicon nitride film, both formed on a semiconductor substrate. Thereafter, the barrier layer and the copper film are removed from outside of the groove for wiring, thereby forming a wiring. Tungsten is selectively or preferentially grown on the wiring to selectively form a tungsten film on the wiring. After the formation of the copper film, a treatment with hydrogen may be performed. After the formation of the wiring, the semiconductor substrate may be cleaned with a cleaning solution capable of removing a foreign matter or a contaminant metal. After the formation of the wiring, a treatment with hydrogen is carried out.Type: GrantFiled: October 22, 2004Date of Patent: January 22, 2008Assignee: Renesas Technology Corp.Inventors: Tatsuyuki Saito, Naohumi Ohashi, Toshinori Imai, Junji Noguchi, Tsuyoshi Tamaru
-
Patent number: 7320482Abstract: The invention intends to provide a technique that achieves a sufficient phase margin with ease. The circuit includes a power supply circuit that is formed with a phase compensating resistor and a phase compensating capacitor, between a second input terminal of a differential amplifier and a low supply voltage. Thereby, the first pole frequency in the overall gain is determined by the first pole frequency in the voltage-dividing resistor stage in the Bode diagram for the pole/zero compensation, which is shifted to a lower frequency. Also, the zero point cancels the first pole frequency in the differential amplifier stage, which reduces the phase delay to secure the phase margin.Type: GrantFiled: April 3, 2007Date of Patent: January 22, 2008Assignees: Hitachi ULSI Systems Co., Ltd., Renesas Technology Corp.Inventors: Hiroshi Toyoshima, Masahiko Nishiyama
-
Patent number: 7321525Abstract: The present invention provides a semiconductor integrated circuit device provided with an interface circuit, which has realized speeding-up. A first input circuit inputs a data strobe signal therein, and a second input circuit inputs therein data formed in sync with the timing of a change in the data strobe signal. A second delay time determination circuit determines an arriving delay time relative to an internal clock in a predetermined determination region in response to the data strobe signal inputted through the first input circuit. The data sampled using the data strobe signal and inputted through the second input circuit is synchronized with the internal clock. A first delay time determination circuit is provided which determines each signal delay time in accordance with a test clock sent via a dummy input/output circuit equally set to signal delay times of a first output circuit and the first and second input circuits.Type: GrantFiled: August 17, 2006Date of Patent: January 22, 2008Assignee: Renesas Technology Corp.Inventor: Shigezumi Matsui
-
Patent number: 7320910Abstract: Manufacturing of semiconductor device includes forming, at substrate main surface, PMOS and NMOS regions separated by PN film. Polysilicon is formed at surface. First insulating film serves as gate insulating film. Second insulating film is formed on polysilicon surface, in gate electrode region extending from PMOS to NMOS regions across PN film. Polysilicon layer is patterned with second insulating film, and first gate electrode extends from PMOS region surface to PN and second gate electrode extends from NMOS region to PN connecting to first gate electrode. At main surface, opposed first source and drain regions are formed by placing first gate electrode therebetween in plan view. At main surface, opposed second source and drain regions are formed by placing second gate electrode therebetween in plan view. The second insulating film, covering first and second gate electrodes is patterned and exposed on PN. Exposed first and second gate electrodes are silicidized.Type: GrantFiled: November 20, 2006Date of Patent: January 22, 2008Assignee: Renesas Technology Corp.Inventor: Motoi Ashida
-
Patent number: 7321152Abstract: Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.Type: GrantFiled: August 4, 2006Date of Patent: January 22, 2008Assignee: Renesas Technology Corp.Inventors: Shigeto Maegawa, Takashi Ipposhi, Toshiaki Iwamatsu, Shigenobu Maeda, Il-Jung Kim, Kazuhito Tsutsumi, Hirotada Kuriyama, Yoshiyuki Ishigaki, Motomu Ukita, Toshiaki Tsutsumi
-
Publication number: 20080011997Abstract: A semiconductor device and a method of manufacturing the same with easy formation of a phase change film is realized, realizing high integration at the time of using a phase change film as a memory element. Between MISFET of the region which forms one memory cell, and MISFET which adjoined it, each source of MISFET adjoins in the front surface of a semiconductor substrate, insulating. And the multi-layer structure of a phase change film, and the electric conduction film of specific resistance lower than the specific resistance is formed in the plan view of the front surface of a semiconductor substrate ranging over each source of both MISFET, and a plug and a plug stacked on it. The multi-layer structure functions as a wiring extending and existing in parallel on the surface of a semiconductor substrate, and an electric conduction film sends the current of a parallel direction on the surface of a semiconductor substrate.Type: ApplicationFiled: July 10, 2007Publication date: January 17, 2008Applicant: Renesas Technology Corp.Inventors: Masahiro MONIWA, Nozomu Matsuzaki, Riichiro Takemura
-
Publication number: 20080014760Abstract: When microfabrication is done, a reliable semiconductor device is offered. A semiconductor device has a semiconductor substrate which has a main front surface, a plurality of convex patterns formed on the main front surface of a semiconductor substrate so that each might have a floating gate and a control gate, a first insulating film formed so that the upper surface and the side surface of each of a plurality of convex patterns might be covered, and so that width might become large rather than the portion which covers the lower part side surface of a convex pattern in the portion which covers an upper part side surface, and a second insulating film that covers the upper surface and the side surface of the first insulating film so that the cavity between the adjacent convex patterns may be occluded. The position occluded by the second insulating film of a cavity is a position higher than the upper surface of a floating gate, and is a position lower than the upper surface of a control gate.Type: ApplicationFiled: June 20, 2007Publication date: January 17, 2008Applicant: Renesas Technology Corp.Inventors: Tatsunori MURATA, Koyu Asai, Hiroaki Iuchi
-
Publication number: 20080013358Abstract: A write bit line and a read bit line are provided separately for a memory cell. A source line connecting to the memory cell is formed of a source impurity region the same in conductivity type as a substrate region. A memory cell transistor and the source impurity region are connected by a metal interconnection line of a low resistance. A rise in the source line potential can be prevented, and a memory cell current can reliably be generated according to storage data. Further, fast data reading can be achieved. Additionally, by performing precharging and data amplification in a unit of read bit line, the load of the read bit line can be alleviated to achieve fast reading. An accessing time of a non-volatile semiconductor memory device that uses a variable resistance element as a storage element is reduced without increasing the current consumption.Type: ApplicationFiled: September 12, 2007Publication date: January 17, 2008Applicant: Renesas Technology Corp.Inventor: Tsukasa Ooishi
-
Patent number: 7319603Abstract: A semiconductor device includes a plurality of memory cells, and an error-correction circuit. Its write operation is performed by a late-write method, and ECC processing is executed in parallel with writing to shorten a cycle time. Moreover, when a memory cell is power-supplied through a well tap, the same address is not assigned while the memory cell is power-supplied through the well tap.Type: GrantFiled: October 4, 2005Date of Patent: January 15, 2008Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.Inventors: Kenichi Osada, Takayuki Kawahara, Ken Yamaguchi, Yoshikazu Saito, Naoki Kitai
-
Patent number: 7319268Abstract: A semiconductor device comprises a BGA substrate having one principal plane furnished with a large number of solder balls, the solder balls constituting a ball grid array; a semiconductor chip mounted on another principal plane of the BGA substrate, the semiconductor chip being electrically connected to the BGA substrate by metal wires; and chip capacitors mounted on the semiconductor chip to reduce power source noise.Type: GrantFiled: May 4, 2007Date of Patent: January 15, 2008Assignee: Renesas Technology CorpInventors: Masaki Watanabe, Shinji Baba
-
Patent number: 7319730Abstract: The present invention provides a data communication method and a data communication device capable of performing high-speed data communication by using a parallel link and higher-speed data communication by reducing a timing skew. A data communication method includes: a step of encoding data of N bits (N being 2 or larger) to transmission data of M bits (M being 3 or larger) on a transmission side; a step of generating a transmission signal in which transition takes place in at least one level of any of the transmission data synchronously with a transmission clock and transmitting the transmission signal to a transmission line on the transmission side; a step of recognizing transition in the signal of M bits received via the transmission line and detecting the reception data of M bits synchronized with the transmission clock on a reception side; and a step of decoding the reception data of M bits to the data of N bits.Type: GrantFiled: October 16, 2002Date of Patent: January 15, 2008Assignee: Renesas Technology Corp.Inventors: Yuichi Okuda, Takeshi Sakata, Takashi Sato
-
Publication number: 20080006851Abstract: In a non-volatile phase-change memory comprising: an interlayer dielectric film and a plug formed on one main surface side of a silicon substrate; a phase-change film which can take a different electric resistivity depending on a phase change and is provided on surfaces of the interlayer dielectric film and the plug; and an upper electrode film formed on an upper surface of the phase-change film, a relation between a film thickness of the phase-change film and an amount of protrusion of the upper electrode film from the plug is set to 0.3?L/T?1. Thus, a density of current flowing through the phase-change film near the outer periphery of the plug is reduced, thereby suppressing migration and enabling rewriting with low energy. Accordingly, a reliable non-volatile phase-change memory can be achieved.Type: ApplicationFiled: July 6, 2007Publication date: January 10, 2008Applicant: Renesas Technology Corp.Inventors: Hiroshi Moriya, Tomio Iwasaki
-
Patent number: 7317640Abstract: In a nonvolatile memory in which a load on a boosting circuit changes according to the number of rewrite bytes, the boosting circuit is configured so as to perform voltage boosting at a relatively slow predetermined speed regardless of the number of rewrite bytes, whereby stress applied to each storage element is reduced and rewrite resistance is enhanced.Type: GrantFiled: August 15, 2006Date of Patent: January 8, 2008Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.Inventors: Yuki Matsuda, Tadashi Oda
-
Patent number: 7317627Abstract: There is to be provided a liquid crystal drive controller with a built-in power supply circuit wherein latch-up is made difficult to arise even if one amplitude level of the segment line drive voltage is set to the ground potential and the levels of other liquid crystal drive voltages are determined accordingly. A semiconductor integrated circuit with a built-in power supply circuit, wherein a negative voltage generated in a power supply circuit is applied to a substrate or a well region as a bias voltage, is provided with a switch for temporarily applying the ground potential to the substrate or well region to be biased with the negative voltage at the time of starting up the power supply circuit.Type: GrantFiled: May 8, 2007Date of Patent: January 8, 2008Assignee: Renesas Technology Corp.Inventors: Kazuya Endo, Naoki Miyamoto, Toshio Mizuno, Takayuki Nakaji, Takatoshi Uchida, Kazuo Ookado, Yoshikazu Yokota
-
Patent number: 7317634Abstract: The programming speed of a nonvolatile semiconductor memory device used as a flash memory is increased as follows. First, second, and third assist gates, a control gate, as well as first and second storage nodes are created over a p-type well. In the course of a programming operation, first of all, the p-type well is set at 0V. Then, a first inversion layer created by setting the first assist gate at a voltage A is set at a voltage B and the second assist gate is set at a voltage C. Subsequently, a second inversion layer created by setting the third assist gate at a voltage D is set at a voltage E and the control gate is set at a voltage F to inject hot electrons generated on the surface of the p-type well in close proximity to the second assist gate into the second storage node.Type: GrantFiled: January 27, 2006Date of Patent: January 8, 2008Assignee: Renesas Technology Corp.Inventors: Tetsufumi Kawamura, Yoshitaka Sasago
-
Patent number: 7317658Abstract: A semiconductor integrated circuit has a memory which can enter active state or standby state, and the memory has voltage generation circuits for bit lines and source lines with which memory cells are connected. The voltage generation circuits make the potential of the bit lines and the potential of the source lines equal to each other in response to an instruction to transition from active state to standby state. The voltage generation circuits produce a potential difference between the bit lines and the source lines in response to an instruction to transition from standby state to active state. In standby state, the potential of the bit lines and that of the source lines are equal to each other. Therefore, sub-threshold leakage does not occur between the source and drain of each memory cell. In active state, the source line potential is not varied.Type: GrantFiled: March 17, 2006Date of Patent: January 8, 2008Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.Inventors: Yoshio Takazawa, Toshio Yamada, Shinichi Ozawa, Takeo Kanai, Minoru Katoh, Koudou Yamauchi, Toshihiro Araki
-
Patent number: 7317224Abstract: A semiconductor device includes a gate electrode GE electrically connected to a gate portion which is made of a polysilicon film provided in the inside of a plurality of grooves formed in a striped form along the direction of T of a chip region CA wherein the gate electrode GE is formed as a film at the same layer level as a source electrode SE electrically connected to a source region formed between adjacent stripe-shaped grooves and the gate electrode GE is constituted of a gate electrode portion G1 formed along a periphery of the chip region CA and a gate finger portion G2 arranged so that the chip region CA is divided into halves along the direction of X. The source electrode SE is constituted of an upper portion and a lower portion, both relative to the gate finger portion G2, and the gate electrode GE and the source electrode SE are connected to a lead frame via a bump electrode.Type: GrantFiled: July 14, 2005Date of Patent: January 8, 2008Assignee: Renesas Technology Corp.Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura
-
Patent number: 7317461Abstract: In a system including a color liquid crystal panel, a liquid crystal display drive control device for driving the panel, and a microprocessor, the display drive control device of the invention lightens the burden imposed on a microprocessor as well as reduces the power consumption of the system.Type: GrantFiled: January 8, 2004Date of Patent: January 8, 2008Assignee: Renesas Technology Corp.Inventors: Takatoshi Uchida, Goro Sakamaki, Kei Tanabe, Yasuhito Kurokawa