Abstract: In this semiconductor memory device, a potential clamping region having no insulation layer formed therein is provided in an insulation layer. More specifically, the potential clamping region is formed under a body portion at a position near a first impurity region, and extends to a first semiconductor layer. A body fixing portion is formed in a boundary region between the body portion and the potential clamping region. This structure enables improvement in operation performance without increasing the layout area in the case where a DRAM cell is formed in a SOI (Silicon On Insulator) structure.
Abstract: For each memory block, a predecoder for predecoding an applied address signal, an address latch circuit for latching the output signal of the predecoder, and a decode circuit for decoding an output signal of the address latch circuit and performing a memory cell selecting operation in a corresponding memory block are provided. Propagation delay of latch predecode signals can be made smaller and the margin for the internal read timing can be enlarged. In addition, the internal state of the decoder and memory cell selection circuitry are rest to an initial state when a memory cell is selected and the internal data output circuitry is reset to an initial state in accordance with a state of internal data reading. Thus, a non-volatile semiconductor memory device that can decrease address skew and realize an operation with sufficient margin is provided.
Type:
Application
Filed:
September 20, 2007
Publication date:
January 24, 2008
Applicants:
RENESAS TECHNOLOGY CORP., HITACHI ULSI SYSTEMS CO., LTD.
Abstract: A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a halt half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
Type:
Application
Filed:
July 6, 2007
Publication date:
January 24, 2008
Applicant:
RENESAS TECHNOLOGY CORP.
Inventors:
Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
Abstract: A multi-level semiconductor memory device for storing multi-level data having three or more values is implemented by utilizing a nonvolatile memory device for storing 2-valued data. Identification of successive 16-bit data externally applied is performed with external address bit AA [2], and a storage block is selected with external address bit AA [23]. Upper word data LW and lower word data UW are compressed into byte data of 8 bits, respectively, and stored in a memory cell array.
Abstract: A semiconductor device is formed by bonding bonding balls to a plurality of electrode pads formed on a semiconductor chip. After a wafer test is conducted by pressing a probe against the electrode pad, wire-bonding of the electrode pad to a lead is carried out so that a probe mark formed in the electrode pad during the wafer test is completely covered by a bonding ball, which forms an end of a wire connected to the lead.
Abstract: The distance between a drain contact and gate electrode in a terminating transistor, which couples a termination resistor connected to an output terminal to a power source node, is set shorter than in an output transistor, which drives an output node in accordance with an internal signal. The area of the terminating circuit is reduced while the reliability against the surge is maintained. Thus, an output circuit containing the terminating circuit that occupies a small area and is capable of transmitting a signal/data at high speed is provided.
Abstract: Level control signals are both set to H level, and potentials of power supply lines are both set to be lower than a power supply potential. In this manner, a gate leakage current during waiting and writing operation of a memory cell array can significantly be reduced. The level control signals are set to L level and H level respectively, and solely the potential of one of the power supply lines is set to be lower than the power supply potential. In this manner, power consumption during a reading operation of the memory cell array can be reduced.
Abstract: The present invention relates to a semiconductor device, a unique ID of the semiconductor device and a method for verifying the unique ID. Thus, original data (bit string) having 127-bit length [126:0] is inputted at step S1. Then, it is determined whether the number of bits of “1” in the bit string [126:0] inputted at the step S1 is more than the half of the bits of the bit string (that is, not less than 64) or not at step S2. When the number is not less than 64, the process proceeds to step S3. At the step S3, the bit string [126:0] is inverted and an invert bit [127] is set to “1”. Then, the process proceeds to step S5. At the step S5, the fuse corresponding to the bit string [126:0] and the bit [127] are cut by LT.
Abstract: A memory array including memory mats is arranged in a U shape when seen in two dimensions, and a logic circuit and an analog circuit are arranged in a region unoccupied by the memory array. This facilitates transmission of power supply voltage and signals between the peripheral circuit including the analog and logic circuits and the pad band including power supply and data pads. The analog circuit is positioned close to the power supply pad, so that voltage drop due to the resistance of power supply interconnection is restricted. It is also possible to separate a charge pumping power supply interconnection and a peripheral circuit power supply interconnection in the vicinity of the power supply pad.
Abstract: Provided is a disconnection and short detecting circuit capable of detecting disconnection and short of a signal line transmitting a differential clock signal. A differential buffer part DB1 has a first comparator to compare a non-inverting clock signal inputted from a PADI and an inverting clock signal inputted from a PADR; a second comparator to compare a non-inverting clock signal and a reference potential Vref; and a third comparator to compare an inverting clock signal and the reference potential Vref. Their respective outputs are defined as Y, YI and YR, respectively. If the signal line of either a non-inverting clock signal or an inverting clock signal is disconnected, or short-circuited to a grounding potential VSS of a logical value Low, the logical values outputted from the second and the third comparators are equal for a long period of time in one cycle of the non-inverting clock signal or the inverting clock signal.
Abstract: A search payload data shift part has n latch parts LT1 to LTn (n?2), each of which can store 1-byte latch data, and obtains search payload data having an n-byte length, while shifting payload data inputted from an input terminal, in synchronization with a clock provided from the exterior. Data related to the search payload data is given to a CAM array, as search object data. When the search object data matches entry data of the CAM array, a hit signal ‘hit’ indicating a match is outputted from the CAM array.
Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
Abstract: A first supply unit sprays and supplies abrasive slurry containing abrasive grains into a mixing unit. A second supply unit sprays and supplies additive into the mixing unit. A third supply unit sprays and supplies pure water into the mixing unit. The mixing unit mixes the mist of abrasive slurry, the mist of additive and the mist of pure water to prepare polishing solution, and supplies the polishing solution onto the major surface of a polishing stage.
Abstract: In a formation method of a copper damascene multilayer wiring in a semiconductor integrated circuit device, after performing an oxidation process on a surface of copper, a heating process of 300° C. to 400° C. is performed in a reducing gas atmosphere, or a plasma annealing process is performed in a reducing gas plasma atmosphere.
Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
Type:
Application
Filed:
July 6, 2007
Publication date:
November 22, 2007
Applicant:
RENESAS TECHNOLOGY CORP.
Inventors:
Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
Abstract: In the same row access, a voltage level of word lines WLA and WLB is set to a power supply voltage VDD?Vtp. On the other hand, in different rows access, a voltage level of word line WLA or WLB is set to power supply voltage VDD. Therefore, when both ports PA and PB simultaneously access the same row, the voltage level of word lines WLA, WLB is set to power supply voltage VDD?Vtp. Thus, a driving current amount of a memory cell is reduced, thereby preventing a reduction in a current ratio of a transistor. As a result, deterioration of SNM can be prevented.
Abstract: An insulating film provided below a floating gate electrode includes a first insulating film located at both end portions below the floating gate electrode, and a second insulating film sandwiched between the first insulating films and located in a middle portion below the floating gate electrode. The first insulating film and the second insulating film are formed in separate steps, and the first insulating film is thicker than the second insulating film. With this structure, when an insulating film is provided between the floating gate electrode and a silicon substrate to have a thickness more increased at its end portion than at its middle portion, the thickness can be increased more freely and a degree of the increase can be controlled more readily.
Abstract: A terminating resistance element of an LSI chip has an N? type impurity diffusion region formed at the surface of a P type well at the surface of a semiconductor substrate, an N+ type impurity diffusion layer formed at the surface of the N? type impurity diffusion region, and a pair of electrodes formed at respective ends at the surface of the N+ type impurity diffusion layer. The N? type impurity diffusion region has an impurity concentration lower than the impurity concentration of the N+ type impurity diffusion layer. Therefore, the capacitance of the PN junction becomes smaller as compared to the conventional case where the N type impurity diffusion layer is provided directly at the surface of a P type semiconductor substrate. Therefore, reflection and attenuation of an input signal are suppressed.
Abstract: A partial isolation insulating film provided between MOS transistors in an NMOS region and a PMOS region, respectively, has a structure in which a portion protruding upward from a main surface of an SOI layer is of greater thickness than a trench depth, namely, a portion (isolation portion) extending below the surface of the SOI layer, and the SOI layer under the partial isolation insulating film is of greater thickness than the isolation portion.