Abstract: The invention relates to the development of appropriate cultivation conditions for a bacteria to grow anaerobically (fermentatively) on a glycerol substrate. The method requires culturing bacteria having a functional 1,2-propanediol pathway and a functional type II glycerol dehydrogenase-dihydroxyacetone kinase pathway in a culture medium containing high concentrations of glycerol, a neutral to mildly acidic pII, low levels of potassium and phosphate, and high levels of CO2, such that glycerol is thus converted into a desirable product, such as ethanol, hydrogen, formate, succinate, or 1,2-propanediol.
Abstract: A novel low-power and compact laser spectroscopic sensor is described herein. Embodiments of the disclosed sensor utilize state-of-the-art microprocessors and digital processing techniques to reduce power consumption and integrate functions into a small device. In particular, novel software methods are disclosed which allow the use of low-power microprocessors which draw no more than about 0.02 W of power. Such low-power enables long battery life and allows embodiments of the sensor to be used in portable applications. In addition, the system architecture and methods described in this disclosure allow a single integrated embedded processor to control all the subsystems necessary for a laser spectroscopic sensor further reducing sensor size and power consumption. In addition, a power efficient method of calibrating a photoacoustic laser spectroscopic sensor is disclosed.
Type:
Grant
Filed:
December 14, 2011
Date of Patent:
December 18, 2012
Assignee:
William Marsh Rice University
Inventors:
Stephen So, Gerard Wysocki, J. Patrick Frantz, Frank K. Tittel
Abstract: Methods for imaging geological structures include injecting magnetic materials into the geological structures, placing at least one magnetic probe in a proximity to the geological structures, generating a magnetic field in the geological structures and detecting a magnetic signal. The at least one magnetic probe may be on the surface of the geological structures or reside within the geological structures. The methods also include injecting magnetic materials into the geological structures, placing at least one magnetic detector in the geological structures and measuring a resonant frequency in the at least one magnetic detector. Methods for using magnetic materials in dipole-dipole, dipole-loop and loop-loop transmitter-receiver configurations for geological structure electromagnetic imaging techniques are also disclosed.
Abstract: The present invention pertains to therapeutic compositions that comprise: (1) a nanovector, (2) an active agent; and (3) a targeting agent, wherein the active agent and the targeting agent are non-covalently associated with the nanovector. The present invention also pertains to methods of treating various conditions in a subject by utilizing the above-described therapeutic compositions. Methods of making the therapeutic compositions are also a subject matter the present invention.
Type:
Application
Filed:
October 27, 2010
Publication date:
November 29, 2012
Applicant:
William Marsh Rice University
Inventors:
James M. Tour, Jacob Berlin, Tam Pham, Jeffrey N. Myers, Daisuke Sano
Abstract: Methods for producing carbon films are disclosed herein. The methods include treating a carbon nanostructure with one or more dispersing agents, filtering the solution through a filter membrane to form the carbon film, releasing the carbon film from the filter membrane, and transferring the film onto a desired substrate without the use of sonication. Carbon films formed by said methods are also disclosed herein.
Type:
Application
Filed:
November 9, 2010
Publication date:
November 22, 2012
Applicant:
William Marsh Rice University
Inventors:
Matteo Pasquali, Robert H. Hauge, Budhadipta Dan, Natnael Behabtu, Cary Pint
Abstract: Embodiments of the invention provide a method of making non-spherical nanoparticles that includes (a) combining a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; and (b) isolating non-spherical nanoparticles from the resulting reaction mixture. Other embodiments of the invention provide non-spherical nanoparticle compositions, that are the reaction product of a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; wherein nanoparticle tetrapods comprise 75-100 number percent of the nanoparticle products.
Type:
Grant
Filed:
April 11, 2008
Date of Patent:
November 20, 2012
Assignee:
William Marsh Rice University
Inventors:
Subashini Asokan, Michael Sha-nang Wong
Abstract: In some embodiments, the present invention relates to new processes to simultaneously shorten and functionalize raw or purified carbon nanotubes to improve their dispersity and processibility, and the short functionalized nanotubes that may be made by the processes. This present invention also relates to new compositions of matter using short functionalized carbon nanotubes with thermoset, thermoplastic polymers, high temperature polymers, and other materials; the processes for making such composite materials; and the products of said processes.
Type:
Grant
Filed:
February 22, 2007
Date of Patent:
November 20, 2012
Assignee:
William Marsh Rice University
Inventors:
Wen-Fang Hwang, Zheyl Chen, James M. Tour
Abstract: The present disclosure relates to a system for collecting gait analysis data for analysis. The system may utilize force plate or balance boards as well as strain gauge force measurements to improve physical therapy and gait analysis for patients that use physical supports to walk or stand. The device measures force applied to the floor and to handrails to provide data on the patient's use of aid, e.g., the handrail, while standing or walking For physical therapy implementations, the system may also be combined with a game or other visual interface that provides feedback to the patient and/or to the caregiver.
Type:
Application
Filed:
April 13, 2012
Publication date:
November 15, 2012
Applicants:
Shriners Hospital for Children, William Marsh Rice University
Inventors:
Steven E. Irby, Z. Maria Oden, Matthew K. Jones, Marcia K. O'Malley, Michele Lynn Pyle, Andrew S. Berger, Judith Lynn Linton
Abstract: Compositions and devices for harvesting electrical energy from mechanical and thermal energy, storing such produced energy, and sensing strain based on low cost materials and processes. In embodiments, the compositions are flexible and include a flexible polymer embedded and coated with a nanostructured piezoelectric material.
Type:
Grant
Filed:
January 22, 2010
Date of Patent:
November 13, 2012
Assignee:
William Marsh Rice University
Inventors:
Pulickel M. Ajayan, Ashavani Kumar, Andres Rafael Botello-Mendez, Hemtej Gullapalli, Mauricio Terrones Maldonado
Abstract: A method comprising polarizing and coupling an electromagnetic beam to a first-order transverse electric (TE1) mode with respect to a parallel plate waveguide (PPWG) integrated resonator comprising two plates and a cavity, sending the electromagnetic beam into the PPWG integrated resonator to excite the cavity by the TE1 mode and cause a resonance response, and obtaining wave amplitude data that comprises a resonant frequency, and obtaining the refractive index of fluids filling the cavity via the shift in resonant frequency.
Abstract: An electronic pegboard setup is provided for assessing patient dexterity. In certain embodiments, the pegboard setup may be wireless and may employ pegs equipped with sensors that that allow tracking of the motion of the peg in three-dimensions and over time. In one such embodiment, a visual output of the motion path may be provided to the clinician. In such an embodiment, the device may provide quantitative data regarding motion path to assess patient dexterity.
Type:
Application
Filed:
April 13, 2012
Publication date:
November 8, 2012
Applicants:
Shriners Hospital for Children, William Marsh Rice University
Inventors:
Steven E. Irby, Dillon P. Eng, Rachel Jackson, Allison C. Scully, Jessica Scully, Robert Likamwa, Marcia K. O'Malley, Z. Maria Oden, Gloria R. Gogola, Avery Laurel Cate
Abstract: In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.
Type:
Application
Filed:
December 15, 2010
Publication date:
October 25, 2012
Applicant:
WILLIAM MARSH RICE UNIVERSITY
Inventors:
Nancy J. Halas, Peter Nordlander, Oara Neumann
Abstract: Various aspects of the present invention pertain to porous membranes that comprise: (1) a plurality of pores with pore sizes of more than about 0.1 ?m in diameter; and (2) a plurality of hydrophilic molecules. Additional aspects of the present invention pertain to methods of separating organic compounds from a liquid sample by: (1) providing the porous membrane; and (2) flowing the liquid sample through the porous membrane in order to retain organic compounds on the porous membrane. Further aspects of the present invention pertain to systems for separating organic compounds from a liquid sample. Such systems comprises: (1) the porous membrane; and (2) a flowing unit that enables the liquid sample to flow through the porous membrane. Additional aspects of the present invention pertain to methods of making the above-described porous membranes by: (1) coating a surface of a porous membrane containing 0.
Type:
Application
Filed:
April 15, 2011
Publication date:
October 18, 2012
Applicant:
WILLIAM MARSH RICE UNIVERSITY
Inventors:
Andrew R. Barron, Samuel J. Maguire-Boyle
Abstract: The present disclosure relates to the use of a paper medium to measure blood hemoglobin concentration. In certain embodiments, spectrophotometric techniques are used to measure light transmission at specified wavelengths through a paper medium containing a blood sample. The light transmission information is then used in the calculation of blood hemoglobin concentration. In certain embodiments, the paper medium may be chemically treated to lyse the blood sample prior to measurement of the light transmission information.
Type:
Application
Filed:
April 6, 2012
Publication date:
October 11, 2012
Applicant:
William Marsh Rice University
Inventors:
Jasper S. Yan, Meaghan McNeill Bond, John Neil Wright, Carlos Elguea, Rebecca Rae Richards-Kortum
Abstract: The present disclosure relates to devices for use in conjunction with a syringe in measuring a dose using the syringe. In certain embodiments, a clip is provided that includes an elongated portion for insertion into a barrel of a syringe and a locking portion that locks onto a feature of the syringe. Once inserted, the clip physically prevents retraction of a plunger of the syringe past a certain point corresponding to a desired dose.
Type:
Application
Filed:
March 21, 2011
Publication date:
September 27, 2012
Applicant:
William Marsh Rice University
Inventors:
Maria Oden, Julia Ellen Davidson Lukomnik, Cindy M. Dinh, Amanda Michelle Gutierrez, Carlos Amaro, Rebecca R. Richards-Kortum
Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
Type:
Application
Filed:
March 19, 2012
Publication date:
September 20, 2012
Applicant:
William Marsh Rice University
Inventors:
Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
Abstract: Methods for imaging geological structures include injecting magnetic materials into the geological structures, placing at least one magnetic probe in a proximity to the geological structures, generating a magnetic field in the geological structures and detecting a magnetic signal. The at least one magnetic probe may be on the surface of the geological structures or reside within the geological structures. The methods also include injecting magnetic materials into the geological structures, placing at least one magnetic detector in the geological structures and measuring a resonant frequency in the at least one magnetic detector. Methods for using magnetic materials in dipole-dipole, dipole-loop and loop-loop transmitter-receiver configurations for geological structure electromagnetic imaging techniques are also disclosed.
Abstract: Methods of fabricating porous silicon by electrochemical etching and subsequent coating with a passivating agent process are provided. The coated porous silicon can be used to make anodes and batteries. It is capable of alloying with large amounts of lithium ions, has a capacity of at least 1000 mAh/g and retains this ability through at least 60 charge/discharge cycles. A particular pSi formulation provides very high capacity (3000 mAh/g) for at least 60 cycles, which is 80% of theoretical value of silicon. The Coulombic efficiency after the third cycle is between 95-99%. The very best capacity exceeds 3400 mAh/g and the very best cycle life exceeds 240 cycles, and the capacity and cycle life can be varied as needed for the application.
Type:
Application
Filed:
October 28, 2010
Publication date:
September 13, 2012
Applicants:
LOCKHEED MARTIN CORPORATION, WILLIAM MARSH RICE UNIVERSITY
Inventors:
Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsbaugh, Mark J. Isaacson
Abstract: An apparatus comprising a parallel plate waveguide (PPWG) comprising two plates separated by a distance that supports a multimode wave, and a transmitter configured to emit a wave having a frequency from about one hundred Gigahertz (GHz) to about ten terahertz (THz) and to couple to one mode of the PPWG. Also disclosed is an apparatus comprising two plates substantially parallel to one another and separated by at least about five millimeters (mm), and an antenna coupled to the two plates and configured to transmit or receive a wave having a frequency from about one hundred GHz to about ten THz. Disclosed is a method comprising polarizing an electromagnetic beam in the first transverse electric (TE1) mode with respect to a PPWG comprising two plates, adjusting the diameter of the electromagnetic beam based on the separation between the plates, and sending the electromagnetic beam into the PPWG.