Patents Assigned to Rice University
  • Publication number: 20100186665
    Abstract: The present invention involves a method and apparatus for depositing a silicon oxide onto a substrate from solution at low temperatures in a manner that produces homogeneous growth of the silicon oxide. The method generally comprises the following steps: (a) Chemically treating a substrate to activate it for growth of the silicon oxide. (b) Immersing the treated substrate into a bath with a reactive solution. (c) Regenerating the reactive solution to allow for continued growth of the silicon oxide. In another embodiment of the present invention, the apparatus includes a first container holding a reactive solution, a substrate on which the silicon oxide is deposited, a second container holding silica, and a means for adding silica to the reactive solution.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Applicant: William Marsh Rice University
    Inventors: Andrew R. Barron, Elizabeth Anne Whitsitt
  • Patent number: 7763256
    Abstract: The present invention relates to the ability of SAP to suppress fibrocytes. It also relates to the ability of IL-12, laminin-1, cross-linked IgG and IgG aggregates to suppress fibrocytes. Methods and compositions for suppressing fibrocytes using these proteins are provided. These methods are useful in a variety of applications including treatment and prevention of fibrosing diseases such as scleroderma, pulmonary fibrosis and asthma. Finally, the invention includes assays for detecting the ability of various agents to modulate differentiation into fibrocytes. Such assays may also be used to diagnose scleroderma, pulmonary fibrosis, or other fibrosing diseases.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: July 27, 2010
    Assignee: William Marsh Rice University
    Inventors: Richard Gomer, Darrell Pilling
  • Publication number: 20100184195
    Abstract: The present invention describes a novel recombinant NADH recycling system that is used as a process for producing reduced compounds. In a specific embodiment, the reduced compounds include ethanol, succinate, lactate, a vitamin, a pharmaceutical and a biodegraded organic molecule. The NADH recycling system effects metabolic flux of reductive pathways in aerobic and anaerobic environments.
    Type: Application
    Filed: February 12, 2010
    Publication date: July 22, 2010
    Applicant: Rice University
    Inventors: Ka-Yiu San, Susana J. Berrios-Rivera, George N. Bennett
  • Patent number: 7758841
    Abstract: The present invention is directed to novel processes for the functionalization (derivatization) of carbon nanotubes and, as an extension, to fullerenes and other carbon surfaces. Generally, such processes involve reductive pathways. In some embodiments, carbon nanotubes are reacted with alkali metal and organic halides in anhydrous liquid ammonia. In other embodiments, polymers are grown from carbon nanotube sidewalls by reacting carbon nanotubes with alkali metal and monomer species in anhydrous liquid ammonia.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: July 20, 2010
    Assignee: William Marsh Rice University
    Inventors: W. Edward Billups, Anil K. Sadana, Feng Liang, Robert H. Hauge
  • Publication number: 20100176349
    Abstract: A method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of single-walled carbon nanotubes to a reducing agent and separating the resulting reaction products. An alternate method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of single-walled carbon nanotubes to an oxidizing agent and separating the resulting reaction products. A third method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of substantially non-functionalized single-walled carbon nanotubes to a charge transfer complex agent and separating the resulting reaction products. These methods allow the production of single-walled carbon nanotubes of approximately 95 to 99% metallic and semiconducting types.
    Type: Application
    Filed: September 27, 2007
    Publication date: July 15, 2010
    Applicant: Willaim Marsh Rice University
    Inventors: Howard K. Schmidt, Robert H. Hauge, Noe T. Alvarez
  • Publication number: 20100177316
    Abstract: A novel low-power and compact laser spectroscopic sensor is described herein. Embodiments of the disclosed sensor utilize state-of-the-art microprocessors and digital processing techniques to reduce power consumption and integrate functions into a small device. In particular, novel software methods are disclosed which allow the use of low-power microprocessors which draw no more than about 0.02 W of power. Such low-power enables long battery life and allows embodiments of the sensor to be used in portable applications. In addition, the system architecture and methods described in this disclosure allow a single integrated embedded processor to control all the subsystems necessary for a laser spectroscopic sensor further reducing sensor size and power consumption. In addition, a power efficient method of calibrating a photoacoustic laser spectroscopic sensor is disclosed.
    Type: Application
    Filed: October 6, 2006
    Publication date: July 15, 2010
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Stephen So, Gerard Wysocki, J. Patrick Frantz, Frank K. Tittel
  • Patent number: 7744844
    Abstract: The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 29, 2010
    Assignee: William Marsh Rice University
    Inventors: Enrique V. Barrera, Richard Wilkins, Meisha Shofner, Merlyn X. Pulikkathara, Ranjii Vaidyanathan
  • Patent number: 7740826
    Abstract: A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: June 22, 2010
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Haiqing Peng, John L. Margrave, Mary Lou Margrave, legal representative, Wilbur Edward Billups, Yunming Ying
  • Publication number: 20100151248
    Abstract: A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 17, 2010
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Dennis J. Flood, John R. Loscutova
  • Patent number: 7736430
    Abstract: A method of treating fly ash to modify the set time and the induction profile for a slurry comprising cement and the fly ash. The method comprising mixing fly ash with an aqueous solution comprising the calcium carbonate, thereby modifying the set time and the induction profile of the slurry comprising cement and the fly ash. A method of treating fly ash to modify the induction profile of a slurry comprising cement and the fly ash. The method comprising contacting fly ash with a wet gas stream comprising water vapor and carbon dioxide in an amount sufficient to react with the fly ash so as to modify the induction profile of the slurry comprising cement and the fly ash. Cement compositions comprising water, hydraulic cement, and carbonated fly, and associated methods of use.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: June 15, 2010
    Assignees: William Marsh Rice University, Halliburton Energy Services, Inc.
    Inventors: Andrew R. Barron, Corina Lupu, Katherine L. Jackson, Sean Bard, Gary Funkhouser
  • Publication number: 20100139946
    Abstract: The present invention relates in general to nanostructured materials and processes for making same. More particularly, the present inventions relates to a nanoscale composite structure and methods for making same involving a conductive nanorod comprising a tip at each of the nanorod extrema; and a material deposited on at the least the tips, wherein the material comprises a reduced form of a redox species, wherein the redox species is adapted for electrochemical reaction with the conductive nanorod when the conductive nanorod is stimulated as an antenna by an electric field.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 10, 2010
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Howard K. Schmidt, Juan G. Duque, Matteo Pasquali
  • Publication number: 20100140591
    Abstract: A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 10, 2010
    Applicant: William Marsh RIce University
    Inventors: Nolan Walker Nicholas, W Carter Kittrell, Myung Jong Kim, Howard K. Schmidt
  • Publication number: 20100143230
    Abstract: According to some embodiments, a method of preparing a superhard material involves using mixtures of boron with carbon nitride of C3N4 stoichiometry as precursors. The C3N4 may be nanospherical. The result of chemical interaction of these components is the formation of new ternary compound B—C—N compound with a cubic structure. According to some embodiments, the composition is BCxN, where x is about 0.5. According to some embodiments, the composition is BCxN, where x is about 0.2. According to some embodiments, the compound has a unit cell parameter a=3.645±0.005 ?. According to some embodiments, the unit cell parameter a is about 3.655 A. Synthesis is carried out under the conditions of thermodynamic stability of diamond at pressures higher that 6.0 GPa and temperatures above 1000° C. The starting components are taken according to the following ratio: boron—20-60 wt. %, C3N4—40-80 wt. %.
    Type: Application
    Filed: January 29, 2008
    Publication date: June 10, 2010
    Applicant: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Vladimir P. Filonenko, Valeri A. Davydov
  • Patent number: 7733924
    Abstract: A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 8, 2010
    Assignee: William Marsh Rice University
    Inventors: Gerard Wysocki, Frank K. Tittel, Robert F. Curl
  • Publication number: 20100133513
    Abstract: According to some embodiments, the present invention provides a nanoelectronic device based on a nanostructure that may include a nanotube with first and second ends, a metallic nanoparticle attached to the first end, and an insulating nanoparticle attached to the second end. The nanoelectronic device may include additional nanostructures so a to form a plurality of nanostructures comprising the first nanostructure and the additional nanostructures. The plurality of nanostructures may arranged in a network comprising a plurality of edges and a plurality of vertices, wherein each edge comprises a nanotube and each vertex comprises at least one insulating nanoparticle and at least one metallic nanoparticle adjacent the insulating nanoparticle. The combination of at least one edge and at least one vertex comprises a diode. The device may be an optical rectenna.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 3, 2010
    Applicant: William Marsh Rice University
    Inventor: Howard K. Schmidt
  • Patent number: 7730547
    Abstract: The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 1, 2010
    Assignee: William Marsh Rice University
    Inventors: Enrique V. Barrera, Satish Nagarajaiah, Prasad Dharap, Li Zhiling, Jong Dae Kim
  • Patent number: 7727504
    Abstract: The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 1, 2010
    Assignee: William Marsh Rice University
    Inventors: W. Carter Kittrell, Yuhuang Wang, Myung Jong Kim, Robert H. Hauge, Richard E. Smalley, Irene Morin Marek, legal representative
  • Patent number: 7718550
    Abstract: The present invention involves a method and apparatus for depositing a silicon oxide onto a substrate from solution at low temperatures in a manner that produces homogeneous growth of the silicon oxide. The method generally comprises the following steps: (a) Chemically treating a substrate to activate it for growth of the silicon oxide. (b) Immersing the treated substrate into a bath with a reactive solution. (c) Regenerating the reactive solution to allow for continued growth of the silicon oxide. In another embodiment of the present invention, the apparatus includes a first container holding a reactive solution, a substrate on which the silicon oxide is deposited, a second container holding silica, and a means for adding silica to the reactive solution.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: May 18, 2010
    Assignee: William Marsh Rice University
    Inventors: Andrew R. Barron, Elizabeth Anne Whitsitt
  • Publication number: 20100122353
    Abstract: Methods for remote activation and permanent or temporary deactivation of integrated circuits (IC) for digital rights management are disclosed. Remote activation enables designers to remotely control each IC manufactured by an independent silicon foundry. Certain embodiments of the invention exploit inherent unclonable variability in modern manufacturing for the creation of unique identification (ID) and then integrate the IDs into the circuit functionality. Some of the objectives may be realized by replicating a subset of states of one or more finite state machines and by superimposing additional state transitions that are known only to the designer. On each chip, the added transitions signals are a function of the unique IDs and are thus unclonable. The method and system of the invention is robust against operational and environment conditions, unclonable and attack-resilient, while having a low overhead and a unique key for each IC with very high probability.
    Type: Application
    Filed: August 7, 2009
    Publication date: May 13, 2010
    Applicant: William Marsh Rice University
    Inventors: Farinaz Koushanfar, Miodrag Potkonjak
  • Publication number: 20100120942
    Abstract: Metal/metal oxide nanoparticle-embedded polymer films were synthesized in situ wherein the polymerizing agent was utilized for both reduction and polymerization (such as curing). This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the polymer matrix. In some embodiments, additional heating can be utilized to form the nanoparticles embedded in the polymer film.
    Type: Application
    Filed: August 7, 2009
    Publication date: May 13, 2010
    Applicant: William Marsch Rice University
    Inventors: P. M. Ajayan, Ashavani Kumar, Anubha Goyal