Patents Assigned to Rice University
-
Publication number: 20100040549Abstract: Disclosed herein are novel targeted drug delivery and controlled release methods and compositions where optically absorbing nanoparticles, such as nanoshells, are functionalized on their surfaces with thermolabile molecules that bind the drug molecules to be delivered. The linkage between the thermolabile moiety on the nanoparticles and the drug is deliberately designed or selected to be temperature sensitive, so that upon illumination of the nanoparticle at a wavelength of light, the drug molecules on the nanoparticles will be released. Targeting molecules, such as antibodies, aptamers or other molecules like folic acid, can be concurrently bound to the nanoparticle surface to deliver the nanoparticle to specifically targeted cells or tissues prior to the photothermally induced drug release. In this way the nanoparticles can be advantageously concentrated on the target prior to illumination, which makes the disclosed compositions both a targeted delivery and a controllable drug release vehicle.Type: ApplicationFiled: January 4, 2008Publication date: February 18, 2010Applicant: WILLIAM MARSH RICE UNIVERSITYInventors: Nancy J. Halas, Dongmao Zhang, Aoune Barhoumi
-
Publication number: 20100035047Abstract: Metal/metal oxide nanoparticle-embedded polymer films were synthesized in situ wherein the polymerizing agent was utilized for both reduction and polymerization (such as curing). This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the polymer matrix. In some embodiments, additional heating can be utilized to form the nanoparticles embedded in the polymer film.Type: ApplicationFiled: August 7, 2009Publication date: February 11, 2010Applicant: William Marsh Rice UniversityInventors: P. M. Ajayan, Ashavani Kumar, Anubha Goyal
-
Publication number: 20100028680Abstract: A nanoparticle comprising a shell surrounding a core material with a lower conductivity than the shell material, wherein the core center is offset in relation to the shell center. A method comprising providing a nanoparticle comprising a nonconductive core and a conductive shell, and asymmetrically depositing additional conductive material on the conductive shell. A method comprising providing a concentric nanoshell having a core and a shell, immobilizing the concentric nanoshell onto a support, and asymmetrically depositing a conductive material onto the shell to produce a nanoegg.Type: ApplicationFiled: June 20, 2007Publication date: February 4, 2010Applicant: William Marsh Rice UniversityInventors: Nancy J. Halas, Hui Wang, Peter J. Nordlander, Yanpeng Wu
-
Publication number: 20100025637Abstract: Embodiments of the invention provide a method of making non-spherical nanoparticles that includes (a) combining a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; and (b) isolating non-spherical nanoparticles from the resulting reaction mixture. Other embodiments of the invention provide non-spherical nanoparticle compositions, that are the reaction product of a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; wherein nanoparticle tetrapods comprise 75-100 number percent of the nanoparticle products.Type: ApplicationFiled: April 11, 2008Publication date: February 4, 2010Applicant: Rice UniversityInventors: Subashini Asokan, Michael Sha-nang Wong
-
Publication number: 20100028737Abstract: A design for a microchannel steam microreformer has been developed to provide power in conjunction with a micro fuel cell for a portable, low-power device. The design is optimized for low pumping power and rapid operation as well as thermal efficiency, overall size, and complete generation of the available hydrogen. The design includes at least one microchannel having a grooved surface with a continuous groove oriented in a spiral configuration.Type: ApplicationFiled: April 26, 2007Publication date: February 4, 2010Applicant: William Marsh Rice UniversityInventors: Yildiz Bayazitoglu, Jeremy Gernand
-
Publication number: 20100028613Abstract: Carbon nanotubes grown on nanostructured flake substrates are disclosed. The nanostructured flake substrates include a catalyst support layer and at least one catalyst layer. Carbon nanotubes grown on the nanostructured flake substrates can have very high aspect ratios. Further, the carbon nanotubes can be aligned on the nanostructured flake substrates. Through routine optimization, the nanostructured flake substrates may be used to produce single-wall, double-wall, or multi-wall carbon nanotubes of various lengths and diameters. The nanostructured flake substrates produce very high yields of carbon nanotubes per unit weight of substrate. Methods for making the nanostructured flake substrates and for using the nanostructured flake substrates in carbon nanotube synthesis are disclosed.Type: ApplicationFiled: October 29, 2008Publication date: February 4, 2010Applicant: William Marsh Rice UniversityInventors: Howard K. Schmidt, Robert H. Hauge, Cary L. Pint, Sean T. Pheasant, Kent E. Coulter
-
Publication number: 20100028247Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.Type: ApplicationFiled: July 1, 2009Publication date: February 4, 2010Applicant: William Marsh Rice UniversityInventors: Michael S. Strano, Monica Ursey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H. Hauge
-
Patent number: 7655302Abstract: This invention relates generally to carbon fiber produced from fullerene nanotube arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 fullerene nanotubes in generally parallel orientation.Type: GrantFiled: August 22, 2006Date of Patent: February 2, 2010Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Publication number: 20100021367Abstract: A method of removing metal impurities from carbon nanotubes includes treating carbon nanotubes with distilled bromine in a substantially oxygen- and water-free atmosphere and then removing the distilled bromine from the carbon nanotubes. Purified carbon nanotubes having an iron content from about 2.5 to about 3.5 by weight that are substantially free of derivatization at the ends and defect sites are made available via this method.Type: ApplicationFiled: May 7, 2007Publication date: January 28, 2010Applicant: William Marsh Rice UniversityInventors: Yuri Mackeyev, Lon J. Wilson
-
Patent number: 7651697Abstract: Hydrogels releasing or producing NO, most preferably polymerizable biodegradable hydrogels capable of releasing physiological amounts of NO for prolonged periods of time, are applied to sites on or in a patient in need of treatment thereof for disorders such as restenosis, thrombosis, asthma, wound healing, arthritis, penile erectile dysfunction or other conditions where NO plays a significant role. The polymeric materials can be formed into films, coatings, or microparticles for application to medical devices, such as stents, vascular grafts and catheters. The polymeric materials can also be applied directly to biological tissues and can be polymerized in situ. The hydrogels are formed of macromers, which preferably include biodegradable regions, and have bound thereto groups that are released in situ to elevate or otherwise modulate NO levels at the site where treatment is needed.Type: GrantFiled: November 17, 2005Date of Patent: January 26, 2010Assignee: Rice UniversityInventors: Jennifer L. West, Kristyn Simcha Masters
-
Publication number: 20100009403Abstract: Production of products by engineered bacteria is increased by regulating cellular respiration. Cellular respiration is controlled by reducing electron transfer enzyme activity. Some examples of electron transfer enzymes include NADH dehydrogenases, Succinate dehydrogenases, ubiquinone synthesis, cytochrome O, and cytochrome D. In one example, deletion of UbiCA prevents respiration. Respiration can the be controlled by addition of ubiquinone or expression of ubiCA.Type: ApplicationFiled: September 7, 2007Publication date: January 14, 2010Applicant: Rice UniversityInventors: Ka-Yiu San, George Bennett
-
Publication number: 20100008843Abstract: The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.Type: ApplicationFiled: November 30, 2005Publication date: January 14, 2010Applicant: William Marsh Rice UniversityInventors: Robert H. Hauge, Ya-Qiong Xu, Haiqing Peng, Richard E. Smalley, Irene Morin Marek
-
Publication number: 20100009418Abstract: A method of increasing cellular NADPH levels by expressing one or more genes that encode an enzyme that causes the production of NADPH. The system is combined with other enzymes that require NADPH, thus improving the overall yield of the desired product.Type: ApplicationFiled: August 29, 2007Publication date: January 14, 2010Applicant: Rice UniversityInventors: Ka-Yiu San, George Bennett, Henry Lin, Irene Martinez, Jiangfeng Zhu
-
Patent number: 7642233Abstract: The present disclosure relates to the use of AHSP to stabilize the ? subunit of rHb. AHSP may be co-expressed with the hemoglobin genes. AHSP stabilization may be used to increase the production of intact rHb in various systems, such as E. coli, other microorganisms, or animal erythroid cells. This intact rHb may then be used as part of a blood substitute product.Type: GrantFiled: March 14, 2007Date of Patent: January 5, 2010Assignees: William Marsh Rice University, The Children's Hospital of PhiladelphiaInventors: John S. Olson, Mitchell J. Weiss
-
Patent number: 7635592Abstract: Matrix-enhancing molecules, such as TGF-?, are conjugated to or immobilized on scaffolds to increase ECM production by cells for tissue engineering, tissue regeneration and wound healing applications. The matrix-enhancing molecule is conjugated to a tether, such as polyethylene glycol (PEG) monoacrylate, for attachment to a tissue engineering or cell growth scaffold. The matrix-enhancing molecule retains activity after attachment to the scaffold, and causes cells growing in or on the scaffold to increase extracellular matrix (ECM) production, without substantially increasing proliferation of the cells, even when the scaffold additionally contains cell adhesion ligands. The increased ECM produced by the cells aids in maintaining the integrity of the scaffold, particularly when the scaffold is degradable, either by hydrolysis or by enzymatic degradation.Type: GrantFiled: August 21, 2001Date of Patent: December 22, 2009Assignee: Rice UniversityInventors: Jennifer L. West, Brenda K. Mann
-
Patent number: 7632481Abstract: The present invention is directed to methods of forming sidewall-functionalized carbon nanotubes, wherein such functionalized carbon nanotubes have hydroxyl-terminated moieties covalently attached to their sidewalls. Generally, such methods involve chemistry on carbon nanotubes that have first been fluorinated. In some embodiments, fluorinated carbon nanotubes (“fluoronanotubes”) are reacted with mono-metal salts of a dialcohol, MO—R—OH, where M is a metal and R is hydrocarbon or other organic chain and/or ring structural unit. In such embodiments, —O—R—OH displaces —F on the nanotube, the fluorine leaving as MF. Generally, such mono-metal salts are formed in situ by the addition of MOH to one or more dialcohols in which the fluoronanotubes have been dispersed. In some embodiments, fluoronanotubes are reacted with amino alcohols, such as being of the type H2N—R—OH, wherein —N(H)—R—OH displaces —F on the nanotube, the fluorine leaving as HF.Type: GrantFiled: June 16, 2004Date of Patent: December 15, 2009Assignee: William Marsh Rice UniversityInventors: Valery N. Khabashesku, Lei Zhang, John L. Margrave, Mary Lou Margrave, legal representative
-
Patent number: 7632569Abstract: This invention relates generally to forming an array of fullerene nanotubes. In one embodiment, a macroscopic molecular array is provided comprising at least about 106 fullerene nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.Type: GrantFiled: August 22, 2006Date of Patent: December 15, 2009Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Publication number: 20090301896Abstract: Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole.Type: ApplicationFiled: August 17, 2007Publication date: December 10, 2009Applicant: William Marsh Rice UniversityInventors: James M. Tour, Jeffrey L. Bahr, Jiping Yang
-
Patent number: 7629120Abstract: A process for assembling a series of DNA fragments generated by PCR into an ordered circular arrangement for replication and genetic work in cells. The PCR fragments are made with a modified nucleotide in the primers that can be removed with a DNA excision repair enzyme to generate a 3? overhang. The 3? overhangs are designed to allow directional annealing and thus sequential PCR fragments can be assembled by annealing the overhangs and subsequent ligation. Sequential addition of PCR fragments is facilitated by growing the chain on a solid support, and the assembled chain can be removed with a site specific recombinase if the first and last primers contain the recombinase site. The circularized assembled fragment can be directly used for cell transformation if the appropriate sequences are included, such as an origin of replication and a selectable marker.Type: GrantFiled: October 31, 2003Date of Patent: December 8, 2009Assignee: Rice UniversityInventors: George Nelson Bennett, Mary Lou Harrison
-
Patent number: 7629388Abstract: A cross-linkable monomer comprises a fumaric acid functional group having a first end and a second end, a first spacer group affixed to said first end and comprising at least repeating unit, a first terminal group affixed to said first spacer group, a second spacer group affixed to said second end and comprising at least one ethylene glycol repeating unit, and a second terminal group affixed to said second spacer group. A hydrogel formed by cross-linking the present monomer and a method for making the monomer. A method for forming a hydrogel, comprises the steps of a) synthesizing a copolymer of poly(propylene fumarate) (PPF) and poly(ethylene glycol (PEG) so as to produce P(PF-co-EG), b) synthesizing a PEG-tethered fumarate (PEGF), c) coupling agmatine sulfate to the PEGF to produce PEGF modified with agmatine (Agm-PEGF), and d) cross-linking the P(PF-co-EG) from step a) with Agm-PEGF from step c).Type: GrantFiled: November 20, 2002Date of Patent: December 8, 2009Assignee: William Marsh Rice UniversityInventors: Antonios G. Mikos, Kazuhiro Tanahashi