Patents Assigned to RJ Mears, LLC
  • Publication number: 20080197341
    Abstract: A method for making a multiple-wavelength opto-electronic device which may include providing a substrates and forming a plurality of active optical devices to be carried by the substrate and operating at different respective wavelengths. Moreover, each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, IIija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Publication number: 20080197340
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Patent number: 7288457
    Abstract: A method for making a semiconductor device may include providing a semiconductor substrate and forming at least one MOSFET by forming spaced apart source and drain regions and a superlattice on the substrate so that the superlattice is between the source and drain regions. The superlattice may include a plurality of stacked groups of layers. The superlattice may have upper portions extending above adjacent upper portions of the source and drain regions, and lower portions contacting the source and drain regions so that a channel is defined in lower portions of the superlattice. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor. The method may further include forming a gate overlying the superlattice.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: October 30, 2007
    Assignee: RJ Mears, LLC
    Inventor: Scott A. Kreps
  • Publication number: 20070238274
    Abstract: A method is for making a spintronic device and may include forming at least one superlattice and at least one electrical contact coupled thereto, with the at least one superlattice including a plurality of groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion having a crystal lattice, at least one non-semiconductor monolayer constrained within the crystal lattice of adjacent base semiconductor portions, and a spintronic dopant. The spintronic dopant may be constrained within the crystal lattice of the base semiconductor portion by the at least one non-semiconductor monolayer. In some embodiments, the repeating structure of a superlattice may not be needed.
    Type: Application
    Filed: March 16, 2007
    Publication date: October 11, 2007
    Applicants: RJ Mears, LLC
    Inventors: Xiangyang HUANG, Samed HALILOV, Jean Chan Sow Fook YIPTONG, Ilija DUKOVSKI, Marek HYTHA, Robert MEARS
  • Patent number: 7279701
    Abstract: A semiconductor device may include a semiconductor substrate and at least one metal oxide semiconductor field-effect transistor (MOSFET). The MOSFET may include spaced apart source and drain regions on the semiconductor substrate, and a superlattice including a plurality of stacked groups of layers on the semiconductor substrate between the source and drain regions. The superlattice may have upper portions extending above adjacent upper portions of the source and drain regions, and lower portions contacting the source and drain regions so that a channel is defined in lower portions of said superlattice. Furthermore, each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor. A gate may overly the superlattice.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: October 9, 2007
    Assignee: RJ Mears, LLC
    Inventor: Scott A. Kreps
  • Patent number: 7279699
    Abstract: An integrated circuit may include at least one active optical device and a waveguide coupled thereto. The waveguide may include a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: October 9, 2007
    Assignee: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson
  • Patent number: 7265002
    Abstract: A method for making a semiconductor device may include providing a substrate, and forming at least one MOSFET adjacent the substrate by forming a superlattice including a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 4, 2007
    Assignee: RJ Mears, LLC
    Inventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
  • Publication number: 20070194298
    Abstract: A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
    Type: Application
    Filed: February 21, 2007
    Publication date: August 23, 2007
    Applicant: RJ Mears, LLC
    Inventors: Ilija Dukovski, Robert Stephenson, Jean Augustin Yiptong, Samed Halilov, Robert Mears, Xiangyang Huang, Marek Hytha
  • Publication number: 20070197006
    Abstract: A method for making a semiconductor device which may include forming a first monocrystalline layer comprising a first material having a first lattice constant, a second monocrystalline layer including a second material having a second lattice constant different than the first lattice constant, and a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. More particularly, the superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. Furthermore, the at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
    Type: Application
    Filed: February 21, 2007
    Publication date: August 23, 2007
    Applicant: RJ Mears, LLC
    Inventors: Ilija Dukovski, Robert Stephenson, Jean Augustin Chan Yiptong, Samed Halilov, Robert Mears, Xiangyang Huang, Marek Hytha
  • Publication number: 20070187667
    Abstract: An electronic device may include a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The electronic device may also include at least one electrode for selectively poling the selectively polable superlattice.
    Type: Application
    Filed: December 21, 2006
    Publication date: August 16, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Chan Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20070166928
    Abstract: A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 19, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20070158640
    Abstract: An electronic device may include a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The electronic device may further include at least one electrode coupled to the poled superlattice.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 12, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20070161138
    Abstract: A method for making an electronic device may include forming a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the poled superlattice.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 12, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Patent number: 7229902
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming at least one pair of oppositely-doped regions in the superlattice defining at least one semiconductor junction.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: June 12, 2007
    Assignee: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson
  • Patent number: 7227174
    Abstract: A semiconductor device may include a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The semiconductor device may further include a semiconductor layer adjacent the superlattice and comprising at least one first region therein including a first conductivity type dopant. The superlattice may also include at least one second region therein including a second conductivity type dopant to define, with the at least one first region, at least one semiconductor junction.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: June 5, 2007
    Assignee: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson
  • Patent number: 7202494
    Abstract: A semiconductor device may include at least one fin field-effect transistor (FINFET) comprising a fin, source and drain regions adjacent opposite ends of the fin, and a gate overlying the fin. The fin may include at least one superlattice including a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 10, 2007
    Assignee: RJ Mears, LLC
    Inventors: Richard A. Blanchard, Kalipatnam Vivek Rao, Scott A. Kreps
  • Publication number: 20070063185
    Abstract: A semiconductor device may include a semiconductor substrate having front and back surfaces, a strained superlattice layer adjacent the front surface of the semiconductor substrate and comprising a plurality of stacked groups of layers, and a stress layer on the back surface of the substrate and comprising a material different than the semiconductor substrate. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 22, 2007
    Applicant: RJ Mears, LLC
    Inventor: Kalipatnam Rao
  • Publication number: 20070063186
    Abstract: A method for making a semiconductor device may include forming a stress layer on a back surface of a semiconductor substrate and forming a strained superlattice layer adjacent a front surface of the semiconductor substrate. More particularly, the stress layer may include a material different than the semiconductor substrate. Also, the strained superlattice may include a plurality of stacked groups of layers. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 22, 2007
    Applicant: RJ Mears, LLC
    Inventor: Kalipatnam Rao
  • Publication number: 20070020860
    Abstract: A method for making a semiconductor device may include forming a superlattice layer including a plurality of stacked groups of layers, and forming a stress layer above the strained superlattice layer to induce a strain therein. Each group of layers of the superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 25, 2007
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott Kreps
  • Publication number: 20070020833
    Abstract: A method for making a semiconductor device may include forming at least one metal oxide semiconductor field-effect transistor (MOSFET) on a semiconductor substrate. The MOSFET may include spaced-apart source and drain regions, a channel between the source and drain regions, and a gate overlying the channel defining an interface therewith. The gate may include a gate dielectric overlying the channel and a gate electrode overlying the gate dielectric. The channel may include a plurality of stacked base semiconductor monolayers, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor monolayers. The at least one non-semiconductor monolayer may be positioned at depth of about 4-100 monolayers relative to the interface between the channel and the gate dielectric.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 25, 2007
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Marek Hytha, Scott Kreps