Abstract: The disclosure relates to a method for measuring the variance in a measurement signal, comprising the following steps: filtering the measurement signal by means of a high-pass filter in order to obtain a filtered measurement signal; determining the variance by using the filtered measurement signal.
Abstract: A method for analyzing a gas, where a sensitive metal oxide-containing layer is exposed to the gas, includes: reducing the temperature of the sensitive layer from a first temperature to a second temperature, the temperature of the sensitive layer being maintained essentially at the second temperature for a predetermined time period; increasing the temperature of the sensitive layer to a third temperature; measuring at least one electrical resistance value of the sensitive layer while the sensitive layer exhibits essentially the third temperature; and analyzing components of the gas based on the measured at least one electrical resistance value.
Type:
Grant
Filed:
August 20, 2018
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Christoph Brueser, Maria Martinez Prada, Philipp Nolte, Thomas Claus
Abstract: A method for calibrating a projection device for a head-mounted display includes scanning a light beam emitted by a light source over a scanning angle range by means of a reflection element such that the light beam deflected by the reflection element passes over a head-mounted display surface region of a deflection element arranged on a lens of the head-mounted display. The surface region has at least two adjustment markings arranged on the head-mounted display, each adjustment marking arranged at a specified position relative to the surface of the deflection element arranged on a lens of the head-mounted display. The method further includes determining in which scan setting of the reflection element the at least two adjustment markings are struck by the light beam.
Abstract: An emergency halt method for a vehicle driving at least partially in automated fashion. The method includes receiving an emergency halt signal; providing a blocking signal, a first control unit being blocked, and the control over controlling driving maneuvers of the vehicle being withdrawn from the first control unit; and providing a not-drive signal for starting an emergency halt maneuver of the vehicle.
Abstract: A torque-angle sensor includes a torque sensing unit, an angle sensing unit, and a PCB. The torque sensing unit includes a signal input rotor and a signal output rotor. The angle sensing unit includes a driving gear and a driven gear that is fitted round and fixed to one of the signal rotors. The PCB has a torque magnetic field generating unit, an input shaft signal collecting unit, and an output shaft signal collecting unit that sense a rotation angle and torque of the signal rotors. The PCB has an angle magnetic field generating unit and an angle collecting unit that sense a rotation angle of the driving gear and the driven gear. The torque magnetic field generating unit, the input shaft signal collecting unit, the output shaft signal collecting unit, the angle magnetic field generating unit, and the angle collecting unit are configured as coils formed by printed circuits.
Abstract: A method for identifying a road condition of a road. A piece of road condition information representing the road condition is determined using a noise level detected by at least one ultrasonic sensor of a vehicle and a bottom echo detected from a road surface in the area of the vehicle.
Type:
Grant
Filed:
April 25, 2019
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Simon Weissenmayer, Philipp Sauer, Christian Beer, Timo Koenig
Abstract: A module for a lidar sensor, including: a light-transmitting path having a movable mirror and a light source; and a transmitting-side microlens set-up, which is situated downstream from the light transmitting path; the light transmitting path being configured to illuminate a first microlens of the microlens set-up on the input side, using a first spot of a predefined diameter of a first light beam; the predefined diameter of the spot of the first light beam being greater than a diameter of the first microlens, and a distance of an edge of the first microlens to edges of adjacent microlenses inside of the transmitting-side microlens set-up corresponding to a difference between the predefined diameter of the spot of the first light beam and the diameter of the first microlens.
Abstract: A system for detecting and mitigating an unsafe condition in a vehicle includes an image sensor configured to generate and output image data of one or more seats in a cabin of the vehicle and a processing system operably connected to the image sensor and including at least one processor. The processing system is configured to receive the image data from the image sensor, process the image data to determine a location of at least one passenger in the cabin, detect that the at least one passenger is located outside of the one or more seats based on the determined location of the at least one passenger in the cabin, and operate at least one component of the vehicle in a predefined manner in response to detecting that the at least one passenger is located outside of the one or more seats.
Type:
Grant
Filed:
December 6, 2019
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Stefan Weissert, Davis Barch, Vimalanandan Selva Vinayagam, Govind Rathore, Pranavkumar Masariya
Abstract: A sensor arrangement for a braking system of a vehicle is disclosed comprising a connection interface, a control unit, and a sensor. The sensor has an external interface with electrical contacts via which the sensor is connected to the control unit. The control unit is connected to and supplied with power via the connection interface and exchanges data with a higher-level unit via the connection interface. The sensor is provided power via the electrical contact points and provides electrical output signals via the electrical contact points. A first contact point provides a first electrical output signal and is connected to the connection interface via a first switching element such that the first contact point is connected to the connection interface when the first switching element is in the deenergized state and is disconnected from the connection interface when the first switching element is in the energized state.
Type:
Grant
Filed:
January 9, 2020
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Michael Schlitzkus, Helmut Seiband, Reinhold Wolpert, Sandra Heim, Stefan Lehenberger, Valentin Notemann
Abstract: A LIDAR apparatus for scanning a scan region with at least one beam is described. The LIDAR apparatus includes at least one beam source for generating the at least one beam; having a mirror for deflecting the at least one generated beam toward the scan region; and having a detector mirror for deflecting at least one beam, reflected at an object, onto a defined region of a detector, the mirror and the detector mirror being disposed on a rotor rotatably around a vertical rotation axis, and the detector mirror focusing the at least one reflected beam onto the detector. A method for operating a LIDAR apparatus is also described.
Abstract: A method for providing sensor data, including providing a maximum measuring range for the sensor, providing a first measuring range which is within the maximum measuring range, providing the sensor data in a data structure having a size that corresponds to the first measuring range, providing a second measuring range which is different from the first measuring range and is within the maximum measuring range, adapting the provided sensor data of the first measuring range for the second measuring range so that the adapted sensor data are provided in an expanded data structure having a size that corresponds to the maximum measuring range, and the provided sensor data being arranged as a function of the difference of the size between the maximum and the second measuring range and the size of the second measuring range within the expanded data structure, and the sensor-data-free sections being filled with values.
Abstract: The invention relates to a method for controlling and monitoring a plurality of battery cells (2) in a battery pack (5), wherein: by means of at least one recording unit (20), a dataset of state variables from each battery cell (2) is recorded and transferred to a selection unit (32); by means of the selection unit (32), individual state variables from the plurality of state variable datasets are selected, which form a virtual dataset of state variables; by means of a simulation unit (34), a model of a virtual cell (8) is created from the selected state variables; and by means of a data-processing unit (36), a limit value for a charging current (I) for charging the battery cells (2) in the battery pack (5) is calculated from the selected state variables of the virtual cell (8).
Abstract: A hydraulic unit includes an assembly with a hydrostatic positive displacement pump and an electric motor. The positive displacement pump includes a driving shaft configured to be driven by the electric motor. The hydraulic unit also includes an inert mass on which the assembly is rigidly mounted so as to minimize vibration of the assembly and reduce noise emission from the assembly.
Type:
Grant
Filed:
October 16, 2019
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Jan Lukas Bierod, Andreas Guender, Marco Scholz, Ralf Maier, Rene Huettl, Stefan-Georg Backhaus
Abstract: A device for a serial bus system. The device has a receiver receiving a signal from a bus of the bus system. For a message exchanged between user stations of the bus system, a recessive bus state is overwritable by a dominant bus state and the recessive bus state is generated differently in the first communication phase than in the second communication phase. The receiver generates a digital signal based on the received signal, and the signal being output to a communication control unit for evaluating the data contained in the digital signal. The receiver uses a first and second reception threshold for generating the digital signal in the second communication phase, the second reception threshold having a voltage value lower than that of the first reception threshold or higher than the highest voltage value which, during normal operation, is established on the bus for a dominant bus.
Type:
Grant
Filed:
December 11, 2019
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Arthur Mutter, Florian Hartwich, Steffen Walker
Abstract: An angle-resolving radar sensor for motor vehicles, having an antenna system having a plurality of antennas set up for receiving, configured in various positions in a direction in which the radar sensor is angle-resolving, and having a control and evaluation device designed for an operating mode in which at least one antenna of the radar sensor that is set up for transmitting sends out a signal that is received by a plurality of the antennas of the radar sensor that are set up to receive, the control and evaluation device being designed, in the mentioned operating mode, for an individual estimation of an angle of a radar target to determine respective individual distances of the radar target for each of the evaluation channels, which correspond to different configurations of transmitting and receiving antennas, and to use the individual distances in the estimation of the angle of the radar target.
Abstract: A method for a position determination of a vehicle, at least one camera and one sensor unit for a global satellite navigation system being situated on the vehicle. The method includes: acquiring at least one camera image of the environment of the vehicle with the aid of the camera, generating a transformed image as a function of the acquired camera image, with the transformed image having a virtual perspective pointing perpendicularly in the downward direction, determining a satellite position of the vehicle through a satellite-based position determination, and providing an aerial image of the environment of the vehicle as a function of the determined satellite position. A detection of a position of the transformed image in the supplied aerial image, and an ascertainment of a vehicle position as a function of the detected position of the transformed image in the supplied aerial image take place subsequently.
Type:
Grant
Filed:
October 16, 2018
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Wolfgang Niem, Hanno Homann, Jan Wolter
Abstract: A sensor device for an electric machine includes a rotor shaft mounted rotatably in a housing, with a signal generator that is or can be joined non-rotatably to the rotor shaft and is or can be arranged axially on the end face of the rotor shaft. A signal sensor is fixed to the housing opposite on the end face of the signal generator and at a distance from the signal generator. The signal sensor acquires an axial distance from the signal generator.
Abstract: A method for verifying an operating software block. The operating software block to be verified is defined based on an operating software. Function inputs and outputs corresponding to the operating software block are ascertained. A multi-dimensional parameter space is defined, each dimension of which corresponding to a function input of the operating software block. Input data tuples are formed based on predetermined rules, which correspond to points within specifiable limits of the parameter space. The operating software block is executed using the input data tuples in order to obtain output data, so that for every function output a dependency on the input data of the function inputs is ascertained. The dependency of the function outputs is compared with a specified standard dependency. A reaction is initiated based on a deviation between the dependency of a function output and the standard dependency.
Abstract: A hand-held power tool includes a housing, a filter support, a plurality of securing element, and an actuating unit. The filter support has receiving openings, at least one first fixing element, and at least one second fixing element. The receiving openings are configured to receive filter elements configured to seal the hand-held power tool against a penetration of dust into the housing of the hand-held power tool. First and second fixing elements are fixable to corresponding securing elements arranged on the hand-held power tool, and are configured to releasably fix the filter support to the housing. The actuation unit is actuatable to release the filter support from the hand-held power tool.
Type:
Grant
Filed:
October 4, 2016
Date of Patent:
November 1, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Florian Esenwein, Peter Stierle, Manfred Lutz, Thomas Schomisch