Patents Assigned to S.O.I. Tec Silicon on Insulator Technologies
  • Patent number: 9196490
    Abstract: The invention relates to a method and to a device for at least locally heating a plate including at least one layer (2) to be at least locally heated by at least one main, light flow pulse, and including at least one priming region (4) located deeply relative to the front surface of said layer to be heated, wherein the main flow (7) is capable of heating said layer to be heated (2) while the temperature of the latter is within a high temperature range (PHT), and a priming a secondary heating means (9) capable of heating said priming region from a temperature within a low temperature range (PBT) up to a temperature within said high temperature range (PHT).
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: November 24, 2015
    Assignee: S.O.I. TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Michel Bruel
  • Patent number: 8871607
    Abstract: A method for producing a hybrid substrate, including a support substrate, a continuous buried insulator layer and, on this continuous layer, a hybrid layer including alternating zones of a first material and at least one second material, wherein these two materials are different by their nature and/or their crystallographic characteristics. The method forms a hybrid layer, including alternating zones of first and second materials, on a homogeneous substrate, assembles this hybrid layer, the continuous insulator layer and the support substrate, and eliminates a part at least of the homogeneous substrate, before or after the assembling.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: October 28, 2014
    Assignees: S.O.I. TEC Silicon on Insulator Technologies, Commissariat a l'Energie Atomique
    Inventors: Thomas Signamarcheix, Franck Fournel, Hubert Moriceau
  • Patent number: 8753528
    Abstract: The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: June 17, 2014
    Assignees: International Business Machines Corporation, S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Stephen W. Bedell, Keith E. Fogel, Nicolas Daval
  • Patent number: 8693835
    Abstract: A method for transferring a thin layer from a lithium-based first substrate includes proton exchange between the first substrate and a first electrolyte, which is an acid, through a free face of the first substrate so as to replace lithium ions of the first substrate by protons, in a proportion between 10% and 80%, over a first depth e1. A reverse proton exchange between the first substrate and a second electrolyte, through the free face is carried out so as to replace substantially all the protons with lithium ions over a second depth e2 smaller than the first depth e1, and so as to leave an intermediate layer between the depths e1 and e2, in which intermediate layer protons incorporated during the proton exchange step remain. The depth e2 defines a thin layer between the free face and the intermediate layer. A heat treatment is carried out under conditions suitable for embrittling the intermediate layer and the thin film is separated from the first substrate at the intermediate layer.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: April 8, 2014
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Aurélie Tauzin, Jean-Sébastien Moulet
  • Patent number: 8519443
    Abstract: The invention concerns a heterojunction bipolar transistor comprising a support, and epitaxially grown from said support, at least: one collecting, respectively emitting, layer; at least one base layer; and at least one emitting, respectively collecting, layer. The collecting, respectively emitting, layer comprises: at least one first undercoat contacted with said base layer, substantially of similar composition as said emitting, respectively collecting, layer; and at least one second undercoat on the side opposite said base layer relative to said first undercoat.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 27, 2013
    Assignees: Centre National de la Recherche Scientifique-CNRS, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Jean-Luc Pelouard, Melania Lijadi, Christophe Dupuis, Fabrice Pardo, Philippe Bove
  • Patent number: 8518799
    Abstract: A process of making semiconductor-on-glass substrates having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer between the silicon film and the glass in an ion implantation thin film transfer process by depositing a stiffening layer or layers on one of the donor wafer or the glass substrate in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 27, 2013
    Assignees: Corning Incorporated, S.O.I TEC Silicon on Insulator Technologies
    Inventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Publication number: 20130146805
    Abstract: The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 13, 2013
    Applicants: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: International Business Machines Corporation, S.O. I. Tec Silicon on Insulator Technologies
  • Patent number: 8461018
    Abstract: A method and/or system are provided for producing a structure comprising a thin layer of semiconductor material on a substrate. The method includes creating an area of embrittlement in the thickness of a donor substrate, bonding the donor substrate with a support substrate and detaching the donor substrate at the level of the area of embrittlement to transfer a thin layer of the donor substrate onto the support substrate. The method also includes thermal treatment of this resulting structure to stabilize the bonding interface between the thin layer and the substrate support. The invention also relates to the structures obtained by such a process.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: June 11, 2013
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Eric Neyret, Sebastien Kerdiles
  • Patent number: 8445122
    Abstract: A data storage medium includes a carrier substrate having an electrode layer on the surface thereof and a sensitive material layer extending along the electrode layeradapted to be locally modified between two electrical states by the action of a localized electric field. A reference plane extends globally parallel to the sensitive material layer and is configured to accommodate at least one element for application of an electrostatic field in combination with the electrode layer the electrode layer including a plurality of conductive portions having a dimension at most equal to 100 nm in at least one direction parallel to the reference plane and separated by at least one electrically insulative zone, where at least some of the conductive portions are electrically interconnected, the conductive portions defining data write/read locations within the sensitive material layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 21, 2013
    Assignees: Commissariat a l 'Energie Atomique, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Chrystel Deguet, Laurent Clavelier, Franck Fournel, Jean-Sebastien Moulet
  • Patent number: 8435897
    Abstract: A method for reclaiming a surface of a substrate, wherein the surface, in particular a silicon surface, comprises a protruding residual topography, comprising at least the layer of a first material. By providing a filling material in the non-protruding areas of the surface of the substrate and the subsequent polishing, the reclaiming can be carried out such that the material consuming double-sided polishing step used in the prior art is no longer necessary.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 7, 2013
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Aziz Alami-Idrissi, Sebastien Kerdiles, Walter Schwarzenbach
  • Patent number: 8431964
    Abstract: The disclosure relates to electronic devices and associated methods of manufacture including materials of the Group III/N. An exemplary device successively includes, from its base towards its surface: (i) a support substrate, (ii) a layer adapted to contain an electron gas, (iii) a barrier layer, and (iv) a superficial layer extending on at least one part of the surface of the barrier layer, wherein the superficial layer has an electrical field of which the current is controlled so that, in at least one first region of the superficial layer, the electrical field is weaker than in a second region of the superficial layer.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 30, 2013
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventor: Hacène Lahreche
  • Publication number: 20130093033
    Abstract: The invention relates to a method of initiating molecular bonding, comprising bringing one face (31) of a first wafer (30) to face one face (21) of a second wafer (20) and initiating a point of contact between the two facing faces. The point of contact is initiated by application to one of the two wafers, for example using a bearing element (51) of a tool (50), of a mechanical pressure in the range 0.1 MPa to 33.3 MPa.
    Type: Application
    Filed: August 1, 2011
    Publication date: April 18, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Arnaud Castex, Marcel Broekaart
  • Publication number: 20130078785
    Abstract: A method for trimming a structure obtained by bonding a first wafer to a second waver on contact faces and thinning the first waver, wherein at least either the first wafer or the second wafer is chamfered and thus exposes the edge of the contact face of the first wafer, wherein the trimming concerns the first wafer. The method includes a) selecting the second wafer from among wafers with a resistance to a chemical etching planned in b) that is sufficient with respect to the first wafer to allow b) to be carried out; b) after bonding the first wafer to the second wafer, chemical etching the edge of the first wafer to form in the first wafer a pedestal resting entirely on the contact face of the second wafer and supporting the remaining of the first wafer; and c) thinning the first wafer until the pedestal is reached and attacked, to provide a thinned part of the first wafer.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicants: Commissariat A L' Energie Atomique, S.O.I Tec Silicon on Insulator Technologies
    Inventors: S.O.I Tec Silicon on Insulator Technologies, Commissariat A L' Energie Atomique
  • Publication number: 20130037959
    Abstract: Methods of forming bonded semiconductor structures include providing a substrate structure including a relatively thinner layer of material on a thicker substrate body, and forming a plurality of through wafer interconnects through the layer of material. A first semiconductor structure may be bonded over the thin layer of material, and at least one conductive feature of the first semiconductor structure may be electrically coupled with at least one of the through wafer interconnects. A transferred layer of material may be provided over the first semiconductor structure on a side thereof opposite the first substrate structure, and at least one of an electrical interconnect, an optical interconnect, and a fluidic interconnect may be formed in the transferred layer of material. A second semiconductor structure may be provided over the transferred layer of material on a side thereof opposite the first semiconductor structure. Bonded semiconductor structures are fabricated using such methods.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Bich-Yen Nguyen, Mariam Sadaka
  • Publication number: 20130039615
    Abstract: Three dimensionally integrated semiconductor systems include a photoactive device operationally coupled with a current/voltage converter on a semiconductor-on-insulator (SeOI) substrate. An optical interconnect is operatively coupled to the photoactive device. A semiconductor device is bonded over the SeOI substrate, and an electrical pathway extends between the current/voltage converter and the semiconductor device bonded over the SeOI substrate. Methods of forming such systems include forming a photoactive device on an SeOI substrate, and operatively coupling an waveguide with the photoactive device. A current/voltage converter may be formed over the SeOI substrate, and the photoactive device and the current/voltage converter may be operatively coupled with one another. A semiconductor device may be bonded over the SeOI substrate and operatively coupled with the current/voltage converter.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Bich-Yen Nguyen, Mariam Sadaka
  • Publication number: 20130037960
    Abstract: Methods of forming bonded semiconductor structures include forming through wafer interconnects through a layer of material of a first substrate structure, bonding one or more semiconductor structures over the layer of material, and electrically coupling the semiconductor structures with the through wafer interconnects. A second substrate structure may be bonded over the processed semiconductor structures on a side thereof opposite the first substrate structure. A portion of the first substrate structure then may be removed, leaving the layer of material with the through wafer interconnects therein attached to the processed semiconductor structures. At least one through wafer interconnects then may be electrically coupled to a conductive feature of another structure, after which the second substrate structure may be removed. Bonded semiconductor structures are formed using such methods.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Mariam Sadaka, Bich-Yen Nguyen
  • Publication number: 20130020704
    Abstract: Methods of directly bonding a first semiconductor structure to a second semiconductor structure include directly bonding at least one device structure of a first semiconductor structure to at least one device structure of a second semiconductor structure in a conductive material-to-conductive material direct bonding process. In some embodiments, at least one device structure of the first semiconductor structure may be caused to project a distance beyond an adjacent dielectric material on the first semiconductor structure prior to the bonding process. In some embodiments, one or more of the device structures may include a plurality of integral protrusions that extend from a base structure. Bonded semiconductor structures are fabricated using such methods.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Mariam Sadaka
  • Patent number: 8329048
    Abstract: A method for trimming a structure obtained by bonding a first wafer to a second waver on contact faces and thinning the first waver, wherein at least either the first wafer or the second wafer is chamfered and thus exposes the edge of the contact face of the first wafer, wherein the trimming concerns the first wafer. The method includes a) selecting the second wafer from among wafers with a resistance to a chemical etching planned in b) that is sufficient with respect to the first wafer to allow b) to be carried out; b) after bonding the first wafer to the second wafer, chemical etching the edge of the first wafer to form in the first wafer a pedestal resting entirely on the contact face of the second wafer and supporting the remaining of the first wafer; and c) thinning the first wafer until the pedestal is reached and attacked, to provide a thinned part of the first wafer.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: December 11, 2012
    Assignees: Commissariat a l'Energie Atomique, S.O.I. TEC Silicon On Insulator Technologies of Chemin des Franques
    Inventors: Marc Zussy, Bernard Aspar, Chrystelle Lagahe-Blanchard, Hubert Moriceau
  • Patent number: 8298915
    Abstract: Method for forming a semi-conducting structure includes the formation of at least one part of a circuit or a component, in or on a superficial layer of a substrate, the substrate including a buried layer underneath the superficial layer, and an underlying layer serving as first support, a transfer of said substrate onto a handle substrate, and then an elimination of the first support, the formation of an electrically conducting or ground plane forming layer, on at least one part of said buried layer, the formation, on said electrically conducting or ground plane forming layer, of a bonding layer, a transfer of the structure obtained onto a second support and an elimination of said handle substrate.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: October 30, 2012
    Assignee: S.O.I. Tec Silicon on Insulator Technologies
    Inventor: Bernard Aspar
  • Patent number: 8293620
    Abstract: A method of implanting atoms and/or ions into a substrate, including: a) a first implantation of ions or atoms at a first depth in the substrate, to form a first implantation plane, b) at least one second implantation of ions or atoms at a second depth in the substrate, which is different from the first depth, to form at least one second implantation plane.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 23, 2012
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, S.O.I. TEC Silicon On Insulator Technologies
    Inventors: Thomas Signamarcheix, Chrystel Deguet, Frederic Mazen