Patents Assigned to S.O.I. Tec Silicon on Insulator Technologies
  • Patent number: 8003493
    Abstract: A process for splitting a semiconductor substrate having an identification notch on its periphery, by creating a weakened zone in the substrate by implanting atomic species into the substrate while the substrate is held in place on a portion of its periphery during the implanting; and splitting the substrate along the weakened zone by placing the held portion of the substrate in a splitting-wave initiation sector while positioning the notch for initiating a splitting wave followed by the propagation of the wave into the substrate. During splitting the notch is positioned so that it is in a quarter of the periphery of the substrate diametrically opposite the sector for initiating the splitting wave or in the quarter of the periphery of the substrate that is centered on the sector.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 23, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Nadia Ben Mohamed, Sébastien Kerdiles
  • Publication number: 20110193201
    Abstract: The present invention notably concerns a method to fabricate and treat a structure of semiconductor-on-insulator type, successively comprising a carrier substrate (1), an oxide layer (3) and a thin layer (2) of semiconducting material, according to which: 1) a mask is formed on said thin layer (2) so as to define exposed regions (20), on the surface of said layer, which are not covered by the mask; 2) heat treatment is applied so as to urge at least part of the oxygen of the oxide layer (3) to diffuse through the thin layer (2), leading to controlled removal of the oxide in the regions (30) of the oxide layer (3) corresponding to the desired pattern; characterized in that said carrier substrate (1) and thin layer (2) are arranged relative to each other so that their crystal lattices, in a plane parallel to their interface (I), together form an angle called a “twist angle” of no more than 1°, and in a plane perpendicular to their interface (I) an angle called a “tilt angle” of no more than 1°, and in that a th
    Type: Application
    Filed: October 9, 2009
    Publication date: August 11, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Oleg Kononchuk, Eric Guiot, Fabrice Gritti, Didier Landru, Christelle Veytizou
  • Publication number: 20110195560
    Abstract: The invention provides a method of producing a heterostructure of the silicon-on-sapphire type, comprising bonding an SOI substrate onto a sapphire substrate and thinning the SOI substrate, thinning being carried out by grinding followed by etching of the SOI substrate. In accordance with the method, grinding is carried out using a wheel with a grinding surface that comprises abrasive particles having a mean dimension of more than 6.7 ?m; further, after grinding and before etching, the method comprises a step of post-grinding annealing of the heterostructure carried out at a temperature in the range of 150° C. to 170° C.
    Type: Application
    Filed: November 19, 2009
    Publication date: August 11, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Gweltaz Gaudin, Alexandre Vaufredaz, Fleur Guittard
  • Publication number: 20110189834
    Abstract: A method of bonding a first substrate to a second substrate by molecular bonding by forming an insulating layer on the bonding face of the first substrate, chemical-mechanical polishing of the insulating layer, activating a bonding surface of the second substrate by plasma treatment, etching an exposed surface of the insulating layer, and bonding together the two substrates together by molecular bonding wherein the etching is conducted after the chemical-mechanical polishing and before the bonding.
    Type: Application
    Filed: October 27, 2009
    Publication date: August 4, 2011
    Applicant: S.O.I. Tec Silicon on Insulator Technologies Parc Technologique dws Fontaines
    Inventors: Arnaud Castex, Gweltaz Gaudin, Marcel Broekaart
  • Publication number: 20110183493
    Abstract: The present invention relates to a process for manufacturing a structure comprising a germanium layer (3) on a support substrate (1), characterised in that it comprises the following steps: (a) formation of an intermediate structure (10) comprising said support substrate (1), a silicon oxide layer (20) and said germanium layer (3), the silicon oxide layer (20) being in direct contact with the germanium layer (3), (b) application to said intermediate structure (10) of a heat treatment, in a neutral or reducing atmosphere, at a defined temperature and for a defined time, to diffuse at least part of the oxygen from the silicon oxide layer (20) through the germanium layer (3).
    Type: Application
    Filed: June 12, 2009
    Publication date: July 28, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Nicolas Daval, Oleg Kononchuk, Eric Guiot, Cecile Aulnette, Fabrice Lallement, Christophe Figuet, Didier Landru
  • Publication number: 20110177673
    Abstract: A method for producing a stacked structure having an ultra thin buried oxide (UTBOX) layer therein by forming an electrical insulator layer on a donor substrate, introducing elements into the donor substrate through the insulator layer, forming an electrical insulator layer, on a second substrate, and bonding the two substrates together to form the stack, with the two insulator layers limiting the diffusion of water and forming the UTBOX layer between the two substrates at a thickness of less than 50 nm, wherein the donor oxide layer has, during bonding, a thickness at least equal to that of the bonding oxide layer.
    Type: Application
    Filed: October 29, 2009
    Publication date: July 21, 2011
    Applicant: S. O. I. Tec Silicon on Insulator Technologies
    Inventor: Didier Landru
  • Patent number: 7981767
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 19, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Patent number: 7981768
    Abstract: A method for producing an epitaxial layer. First, a structure is fabricated by: formation of an intermediate layer on a donor substrate; and formation of the epitaxial layer on the intermediate layer by epitaxy; with the melting temperature of the intermediate layer being lower than the melting temperature of the epitaxial layer; and then a detachment step for transferring the epitaxial layer from the donor substrate. The detachment step includes applying at least one thermal treatment performed at a temperature of between the melting temperature of the intermediate layer and the melting temperature of the epitaxial layer.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: July 19, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Yves-Matthieu Le Vaillant
  • Patent number: 7977705
    Abstract: In one embodiment, the invention provides substrates that are structured so that devices fabricated in a top layer thereof have properties similar to the same devices fabricated in a standard high resistivity substrate. Substrates of the invention include a support having a standard resistivity, a semiconductor layer arranged on the support substrate having a high-resistivity, preferably greater than about 1000 Ohms-cm, an insulating layer arranged on the high-resistivity layer, and a top layer arranged on the insulating layer. The invention also provides methods for manufacturing such substrates.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: July 12, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Patent number: 7977747
    Abstract: The invention specifically relates to methods of fabricating a composite substrate by providing a first insulating layer on a support substrate at a thickness of e1 and providing a second insulating layer on a source substrate at a thickness of e2, with each layer having an exposed face for bonding; providing plasma activation energy in an amount sufficient to activate a portion of the thickness of the face of the first insulating layer emp1 and a portion of the thickness of the face of the second insulating layer emp1; providing a final insulating layer by molecular bonding the activated face of the first insulating layer with the activated face of the second insulating layer; and removing a back portion of the source substrate while retaining an active layer comprising a remaining portion of the source substrate bonded to the support substrate with the final insulating layer interposed therein to form the composite substrate.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: July 12, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Frédéric Allibert, Sébastien Kerdiles
  • Publication number: 20110163410
    Abstract: A method for producing a hybrid substrate, including a support substrate, a continuous buried insulator layer and, on this continuous layer, a hybrid layer including alternating zones of a first material and at least one second material, wherein these two materials are different by their nature and/or their crystallographic characteristics. The method forms a hybrid layer, including alternating zones of first and second materials, on a homogeneous substrate, assembles this hybrid layer, the continuous insulator layer and the support substrate, and eliminates a part at least of the homogeneous substrate, before or after the assembling.
    Type: Application
    Filed: June 6, 2008
    Publication date: July 7, 2011
    Applicants: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES, COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Thomas Signamarcheix, Franck Fournel, Hubert Moriceau
  • Patent number: 7972939
    Abstract: A method for minimizing or avoiding contamination of a receiving handle wafer during transfer of a thin layer from a donor wafer. This method includes providing a donor wafer and a receiving handle wafer, each having a first surface prepared for bonding and a second surface, with the donor wafer providing a layer of material to be transferred to the receiving handle wafer. Next, at least one of the first surfaces is treated to provide increased bonding energy when the first surfaces are bonded together; the surfaces are then bonded together to form an intermediate multilayer structure; and a portion of the donor wafer is removed to transfer the thin layer to the receiving handle wafer and form the semiconductor structure. This method avoids or minimizes contamination of the second surface of the receiving handle wafer by treating only the first surface of the donor wafer prior to bonding by exposure to a plasma, and by conducting any thermal treatments after plasma activation at a temperature of 300° C.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Sébastien Kerdiles, Christophe Maleville, Fabrice Letertre, Olivier Rayssac
  • Publication number: 20110156212
    Abstract: Methods of fabricating semiconductor devices or structures include bonding a layer of semiconductor material to another material at a temperature, and subsequently changing the temperature of the layer of semiconductor material. The another material may be selected to exhibit a coefficient of thermal expansion such that, as the temperature of the layer of semiconductor material is changed, a controlled and/or selected lattice parameter is imparted to or retained in the layer of semiconductor material. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Novel intermediate structures are formed during such methods. Engineered substrates include a layer of semiconductor material having an average lattice parameter at room temperature proximate an average lattice parameter of the layer of semiconductor material previously attained at an elevated temperature.
    Type: Application
    Filed: July 23, 2009
    Publication date: June 30, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Chantal Arena
  • Patent number: 7968390
    Abstract: In one embodiment, the disclosure relates to an electronic device successively comprising from its base to its surface: (a) a support layer, (b) a channel layer adapted to contain an electron gas, (c) a barrier layer and (d) at least one ohmic contact electrode formed by a superposition of metallic layers, a first layer of which is in contact with the barrier layer. The device is remarkable in that the barrier layer includes a contact region under the ohmic contact electrode(s). The contact region includes at least one metal selected from the metals forming the superposition of metallic layers. Furthermore, a local alloying binds the contact region and the first layer of the electrode(s).
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: June 28, 2011
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventor: Hacène Lahreche
  • Patent number: 7968909
    Abstract: Reconditioned donor substrates that include a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and an additional layer deposited upon the opposite surface of the remainder substrate to increase its thickness and to form the reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers and is typically made from gallium nitride donor substrates.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: June 28, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Frederic Dupont
  • Patent number: 7968911
    Abstract: A crystalline wafer comprising of a support substrate, a first layer and an interface layer. The first layer is of a first material in a relaxed state having a lattice parameter that is substantially equal to the nominal lattice parameter of the first material. The interface layer is in an at least partially molten state disposed between the support substrate and the first layer. The first material is preferably silicon germanium, and the interface layer includes germanium in a higher concentration than that of first material.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 28, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: George K Celler
  • Patent number: 7956441
    Abstract: A composite structure that includes front faces of the first and second substrates that are molecularly bonded to each other. The dimensions of the second substrate outline are larger than the first substrate outline, and a peripheral side of the second substrate substantially borders the second front face and is oriented generally perpendicularly with respect thereto. The front faces are molecularly bonded such that the outline of the first front face is disposed at least partially within the outline of the second front face. A peripheral ring extending around the first front face and facing the first substrate, in which bonding between the front faces is weak or absent, has a maximum width of less than about 0.5 mm.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 7, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Christophe Maleville
  • Patent number: 7956436
    Abstract: A method for forming a device wafer with a recyclable support by providing a wafer having first and second surfaces, with at least the first surface of the wafer comprising a semiconductor material that is suitable for receiving or forming electronic devices thereon, providing a supporting substrate having upper and lower surfaces, and providing the second surface of the wafer or the upper surface of the supporting substrate with void features in an amount sufficient to enable a connecting bond therebetween to form a construct wherein the bond is formed at an interface between the wafer and the substrate and is suitable to maintain the wafer and supporting substrate in association while forming or applying electronic devices to the first surface of the wafer, but which connecting bond is severable at the interface due to the void features to separate the substrate from the wafer so that the substrate can be reused.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: June 7, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: George K. Celler
  • Publication number: 20110129988
    Abstract: A method of implanting atoms and/or ions into a substrate, including: a) a first implantation of ions or atoms at a first depth in the substrate, to form a first implantation plane, b) at least one second implantation of ions or atoms at a second depth in the substrate, which is different from the first depth, to form at least one second implantation plane.
    Type: Application
    Filed: July 7, 2009
    Publication date: June 2, 2011
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT, S.O.I. TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Thomas Signamarcheix, Chrystel Deguet, Frederic Mazen
  • Patent number: 7947571
    Abstract: The invention relates to a method for fabricating a semiconductor on insulator substrate, in particular a silicon on insulator substrate by providing a source substrate, providing a predetermined splitting area inside the source substrate by implanting atomic species, bonding the source substrate to a handle substrate, detaching a remainder of the source substrate from the source-handle component at the predetermined splitting area to thereby transfer a device layer of the source substrate onto the handle substrate, and thinning of the device layer. To obtain semiconductor on insulator substrates with a reduced Secco defect density of less than 100 per cm2 the implanting is carried out with a dose of less than 2.3×106 atoms per cm2 and the thinning is an oxidation step conducted at a temperature of less than 925° C.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: May 24, 2011
    Assignee: S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Luciana Capello, Oleg Kononchuk, Eric Neyret, Alexandra Abbadie, Walter Schwarzenbach