Abstract: Systems and methods are disclosed that enable power regulation during wireless power transfer, such as during magnetic resonance (MR) charging of one or more devices from a power transfer device, while enabling the one or more devices to access a network drive via a routing mechanism while the network drive is operatively coupled to an apparatus that includes the power transfer device and the routing mechanism.
Abstract: Fabrication techniques for a three-dimensional stack memory device remove the charge-trapping material from the select gate transistors and the dummy memory cells to avoid unintentional programming which increases the threshold voltage. In one approach, a stack is formed with a sacrificial material for the a) control gate layers of the select gate transistors and the dummy memory cells and the b) control gate layers of the data memory cells. A slit is formed to allow etchants to be introduced to selectively remove the sacrificial material and then the charge-trapping material for the select gate transistors and dummy memory cells. A protective layer is provided partway in the slit, or the slit is etched in two steps.
Abstract: When performing an erase on a flash type non-volatile memory with a NAND type of structure, techniques are presented for inhibiting erase on selected word lines, select lines of programmable select transistors, or some combination of these. The voltage along the selected control lines are initially ramped up by the level on a corresponding input line, but then have their voltage raised to an erase inhibit level by capacitive coupling with the well structure. The level of these input signals are ramped up with the erase voltage applied to the well structure, but with a delay based upon the coupling ratio between the control line and the well.
Abstract: A memory system and method are provided for selecting memory dies for memory access operations based on memory die temperatures. The memory system has a plurality of memory dies, where each memory die has its own temperature sensor. In one embodiment, the memory system selects which memory dies to perform memory access operations in based on the temperatures of the memory dies. In another embodiment, a controller of the memory system selects which memory dies to thermal throttle memory access operations in based on the detected temperatures. In yet another embodiment, a temperature-aware media management layer module of the memory 1 system routes a memory access operation from a first memory die to a second memory die based on the temperatures of the memory dies.
Abstract: A population of memory cells are programmed and an indicator of a first number of the memory cells programmed to a first state is recorded. Subsequently, a first read operation is performed using a first set of read parameters to identify a second number of the memory cells that are read as being in the first state. The difference between the first number and the second number is determined and a second set of read parameters for a second read (reread) is selected accordingly.
Abstract: A method of forming a semiconductor device includes forming a plurality of word lines separated by air gaps with contact pad structures connected to the word lines, and forming a dummy structure directly opposite an air gap between neighboring word lines. Subsequently, the contact pad structures are cut into individual contact pads by a contact pad cut that intersects the dummy structure.
Abstract: A number of techniques determine defects in non-volatile memory arrays, which are particularly applicable to 3D NAND memory, such as BiCS type. Word line to word line shorts within a memory block are determined by application of an AC stress mode, followed by a defect detection operation. An inter-block stress and detection operation can be used to determine word line to word line leaks between different blocks. Select gate leak line leakage, for both the word lines and other select lines, is considered, as are shorts from word lines and select lines to local source lines. In addition to word line and select line defects, techniques determine shorts between bit lines and low voltage circuitry, such as in sense amplifiers.
Abstract: Changes in the distribution of memory cells across memory states allow calculation of Bit Error Rate (BER). Comparison of test data stored in memory and a known good copy of the test data provides test data BER from which user data BER may be obtained. Data may be handled differently according to its BER.
Abstract: A non-volatile memory system including multi-level storage optimized for ramp sensing and soft decoding is provided. Sensing is performed at a higher bit resolution than an original user data encoding to improve the accuracy of reading state information from non-volatile storage elements. Higher resolution state information is used for decoding the original user data to improve read performance through improved error handling. Ramp sensing is utilized to determine state information by applying a continuous input scanning sense voltage that spans a range of read compare points. Full sequence programming is enabled as is interleaved coding of the user data over all of the data bit sets associated with the storage elements.
Type:
Application
Filed:
July 7, 2016
Publication date:
October 27, 2016
Applicant:
SanDisk Technologies LLC
Inventors:
Kevin Michael Conley, Raul-Adrian Cernea, Eran Sharon, Idan Alrod
Abstract: Methods, systems, and computer readable media for address and data integrity checking in flash memory operations are disclosed. One method includes, at a storage controller, generating, for an address unit, an address parity unit. The method further includes generating a command sequence including the address unit, the address parity unit, and an operation command specifying an operation to be performed on a flash memory array. The method further includes providing the command sequence to a flash memory device that includes the non-volatile memory array. The method further includes performing, by the flash memory device, an address integrity check on the address unit using the address parity unit. The method further includes determining whether or not to perform an operation specified by the command sequence based at least in part on a result of the address integrity check.
Abstract: Wide and narrow mandrels that are used to form sidewall spacers for patterning are formed in a sacrificial layer with openings in wide mandrels near sides of the wide mandrels. Sidewall spacers are formed on the sides of mandrels and the sacrificial layer is removed. The sidewall spacers are then used for patterning of underlying layers.
Abstract: A non-volatile memory system may include a mechanism for analyzing and measuring/predicting data loss without reading data in memory cells of the non-volatile memory. The system may include a data management module that utilizes charge loss measurements of a reference charge device that is independent of the memory cells that are configured to store data. The measured charge loss may be correlated with a predetermined data loss profile for the non-volatile memory that corresponds with charge loss on the reference charge device. The method may include charging the reference charge device when the non-volatile memory system is being powered down and making the charge loss measurement, and estimating data loss, when the non-volatile memory system is later powered up. The non-volatile memory cells may be refreshed when the estimated data loss is above a predetermined threshold.
Abstract: A memory system or flash memory device may include identify a bit error rate (BER) mapping for the memory. The BER mapping may be used for identifying erroneous bits, managing them, and using them for the system maintenance and system recovery. A complete BER map may be stored in main memory while a cached version of the BER map may be stored in random access memory (RAM). The cached version may identify only the top and bottom bits rather than the complete map. The cached BER map may be updated based on future reads and future programming may rely on the cached BER map for selecting blocks to program.
Type:
Grant
Filed:
June 3, 2014
Date of Patent:
October 25, 2016
Assignee:
SanDisk Technologies LLC
Inventors:
Nian Niles Yang, Jianmin Huang, Alexandra Bauche
Abstract: A 3D NAND memory has vertical NAND strings across multiple memory layers above a substrate, with each memory cell of a NAND string residing in a different memory layer. Word lines in each memory layer each has a series of socket components aligned to embed respective floating gates of a group memory cells. This structure allows reduction in cell dimension as well as reducing floating-gate perturbations between neighboring cells. The memory is fabricated by using odd and even subarrays of vertical shafts on a multi-layer slab to create at different times odd and even socket components that overlap to form continuous word lines with socket components. In particular, with only three masks, the even memory cells are fabricated to have their word line socket component enlarged to overlap with those of the odd memory cells in order to form continuous word lines in the row direction.
Abstract: Semiconductor fabrication techniques and associated semiconductor devices are provided in which conductive lines are separated by a low dielectric constant (low-k) material such as low-k film portions or air. An insulation layer such as SiO2 is etched to form raised structures. The structures are slimmed and a low-k material or sacrificial material is deposited. A further etching removes the material except for portions on sidewalls of the slimmed structures. A metal barrier layer and seed layer are then deposited, followed by a metal filler such as copper. Chemical mechanical polishing (CMP) removes portions of the metal above the raised structures, leaving only portions of the metal between the raised structures as spaced apart conductive lines. The sacrificial material can be removed by a thermal process, leaving air gaps. The raised structures provide strength while the air gap or other low-k material reduces capacitance.
Abstract: Three-dimensional (3D) non-volatile memory arrays having a vertically-oriented thin film transistor (TFT) select device and method of fabricating such a memory are described. The vertically-oriented TFT may be used as a vertical bit line selection device to couple a global bit line to a vertical bit line. A select device pillar includes a body and upper and lower source/drain regions. At least one gate is separated horizontally from the select device pillar by a gate dielectric. Beneath each gate, a single gap fill dielectric layer extends vertically from a lower surface of the gate, at least partially separating the gate from the underlying global bit line. Between horizontally adjacent pillars, this same dielectric layer extends from its same lower level beneath the gates vertically to a level of the upper source/drain region.
Abstract: A method of programming a memory cell is provided. The memory cell includes a memory element having a first conductive material layer, a first dielectric material layer above the first conductive material layer, a second conductive material layer above the first dielectric material layer, a second dielectric material layer above the second conductive material layer, and a third conductive material layer above the second dielectric material layer. One or both of the first and second conductive material layers comprises a stack of a metal material layer and a highly doped semiconductor material layer. The memory cell has a first memory state upon fabrication corresponding to a first read current. The method includes applying a first programming pulse to the memory cell with a first current limit. The first programming pulse programs the memory cell to a second memory state that corresponds to a second read current greater than the first read current.
Type:
Grant
Filed:
July 20, 2015
Date of Patent:
October 18, 2016
Assignee:
SanDisk Technologies LLC
Inventors:
Abhijit Bandyopadhyay, Tanmay Kumar, Scott Brad Herner, Christopher J. Petti, Roy E. Scheuerlein
Abstract: Systems and methods for performing data recovery are disclosed. A controller of a memory system may detect an error at a first page of memory and identify a data keep cache associated with the first page, the data keep cache associated with a primary XOR sum. The controller may further sense data stored at a second page and move the data to a first latch of the memory; sense data stored at a third page such that the data is present in a second latch of the memory; and calculate a restoration XOR sum based on the data of the second page and the data of the third page. The controller may further calculate the data of the first page based on the primary XOR sum and the restoration XOR sum, and restore the data of the first page.
Abstract: A storage module and method for adaptive burst mode are provided. In one embodiment, a storage module is provided comprising a memory and a controller. The controller is configured to receive a plurality of write commands from a host controller in communication with the storage module, store the plurality of write commands in a command queue in the storage module, and choose one of a plurality of burst modes in which to operate the memory based on how many write commands are stored in the command queue.
Type:
Grant
Filed:
April 16, 2014
Date of Patent:
October 18, 2016
Assignee:
SanDisk Technologies LLC
Inventors:
Amir Shaharabany, Tal Heller, Hadas Oshinsky, Enosh Levi, Einav Pnina Zilberstein, Judah Gamliel Hahn
Abstract: Determining dynamic read levels for memory cells is disclosed. A group of memory cells may be read at a pair of reference levels. Results of reading the group at the pair of reference levels are compared while the group is read at a different reference level. By comparing the results of reading the group at the pair of reference levels while reading the group at a different reference level, time is saved. Note that the reading and comparing can be repeated for other pairs of reference levels. The storage device may determine an adjusted read level based on the comparisons of the results for the different pairs of reference levels. The memory cells may be read at a set of reference levels. A voltage on a word line is not back down to ground between the reads in one aspect, which saves considerable time.