Patents Assigned to Semiconductor Manufacturing
  • Patent number: 10680166
    Abstract: A semiconductor structure is provided. The semiconductor structure includes: a substrate; a magnetic layer over the substrate; a magnetic tunnel junction (MTJ) cell over the magnetic layer; and a non-magnetic conductive layer between the magnetic layer and the MTJ cell. An associated method for fabricating the semiconductor structure is also disclosed.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chwen Yu, Shy-Jay Lin
  • Patent number: 10680126
    Abstract: Structures including crystalline material disposed in openings defined in a non-crystalline mask layer disposed over a substrate. A photovoltaic cell may be disposed above the crystalline material.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jizhong Li, Anthony J. Lochtefeld, Calvin Sheen, Zhiyuan Cheng
  • Patent number: 10680172
    Abstract: A memory cell includes: a resistive material layer comprising a first portion that extends along a first direction and a second portion that extends along a second direction, wherein the first and second directions are different from each other; a first electrode coupled to a bottom surface of the first portion of the resistive material layer; and a second electrode coupled to the second portion of the resistive material layer.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Mo, Shih-Chi Kuo
  • Patent number: 10679936
    Abstract: Disclosed is a method of manufacturing a three dimensional (3D) metal-insulator-metal (MIM) capacitor in the back end of line, which can provide large and tunable capacitance values and meanwhile, does not interfere with the existing BEOL fabrication process.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun huan Wei, Pin Yu Hsu, Szu-Yuan Chen, Po-June Chen, Kuan-Yu Chen
  • Patent number: 10679995
    Abstract: A semiconductor device including a cap layer and a method for forming the same are disclosed. In an embodiment, a method includes epitaxially growing a first semiconductor layer over an N-well; etching the first semiconductor layer to form a first recess; epitaxially growing a second semiconductor layer filling the first recess; etching the second semiconductor layer, the first semiconductor layer, and the N-well to form a first fin; forming a shallow trench isolation region adjacent the first fin; and forming a cap layer over the first fin, the cap layer contacting the second semiconductor layer, forming the cap layer including performing a pre-clean process to remove a native oxide from exposed surfaces of the second semiconductor layer; performing a sublimation process to produce a first precursor; and performing a deposition process wherein material from the first precursor is deposited on the second semiconductor layer to form the cap layer.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Wang, Yueh-Ching Pai, Huai-Tei Yang
  • Patent number: 10680168
    Abstract: A metal layer and first dielectric hard mask are deposited on a bottom electrode. These are patterned and etched to a first pattern size. The patterned metal layer is trimmed using IBE at an angle of 70-90 degrees wherein the metal layer is reduced to a second pattern size smaller than the first pattern size. A dielectric layer is deposited surrounding the patterned metal layer and polished to expose a top surface of the patterned metal layer to form a via connection to the bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. The MTJ stack is etched to a pattern size larger than the via size wherein an over etching is performed. Re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Zhongjian Teng, Jesmin Haq, Yu-Jen Wang
  • Patent number: 10680002
    Abstract: In some embodiments, a method for forming a semiconductor device is provided. The method includes forming a pad stack over a semiconductor substrate, where the pad stack includes a lower pad layer and an upper pad layer. An isolation structure having a pair of isolation segments separated in a first direction by the pad stack is formed in the semiconductor substrate. The upper pad is removed to form an opening, where the isolation segments respectively have opposing sidewalls in the opening that slant at a first angle. A first etch is performed that partially removes the lower pad layer and isolation segments in the opening so the opposing sidewalls slant at a second angle greater than the first angle. A second etch is performed to round the opposing sidewalls and remove the lower pad layer from the opening. A floating gate is formed in the opening.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Ling Shih, Chieh-Fei Chiu, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Shih Kuang Yang
  • Patent number: 10680062
    Abstract: A gate-all-around field effect transistor (GAA FET) includes an InAs nano-wire as a channel layer, a gate dielectric layer wrapping the InAs nano-wire, and a gate electrode metal layer formed on the gate dielectric layer. The InAs nano-wire has first to fourth major surfaces three convex-rounded corner surfaces and one concave-rounded corner surface.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mark Van Dal, Gerben Doornbos, Matthias Passlack, Martin Christopher Holland
  • Patent number: 10680078
    Abstract: A semiconductor arrangement and method of formation are provided. The semiconductor arrangement comprises a conductive contact in contact with a substantially planar first top surface of a first active area, the contact between and in contact with a first alignment spacer and a second alignment spacer both having substantially vertical outer surfaces. The contact formed between the first alignment spacer and the second alignment spacer has a more desired contact shape then a contact formed between alignment spacers that do not have substantially vertical outer surfaces. The substantially planar surface of the first active area is indicative of a substantially undamaged structure of the first active area as compared to an active area that is not substantially planar. The substantially undamaged first active area has a greater contact area for the contact and a lower contact resistance as compared to a damaged first active area.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tai-I Yang, Tien-Lu Lin, Wai-Yi Lien, Chih-Hao Wang, Jiun-Peng Wu
  • Patent number: 10680079
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure are provided. The method includes forming a gate structure on a base substrate and forming a first dielectric layer on the base substrate. The first dielectric layer has a top lower than the gate structure and exposes a sidewall portion of the gate structure. The method also includes forming an isolation sidewall spacer on the exposed sidewall portion of the gate structure.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 9, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Fei Zhou
  • Patent number: 10679900
    Abstract: A method includes forming Shallow Trench Isolation (STI) regions in a semiconductor substrate and a semiconductor strip between the STI regions. The method also include replacing a top portion of the semiconductor strip with a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. The first semiconductor layer has a first germanium percentage higher than a second germanium percentage of the second semiconductor layer. The method also includes recessing the STI regions to form semiconductor fins, forming a gate stack over a middle portion of the semiconductor fin, and forming gate spacers on sidewalls of the gate stack. The method further includes forming fin spacers on sidewalls of an end portion of the semiconductor fin, recessing the end portion of the semiconductor fin, and growing an epitaxial region over the end portion of the semiconductor fin.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Ting-Hung Hsu, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 10678138
    Abstract: The EUV radiation source includes a rotatable EUV source vessel configured to collect fuel debris generated from the collision of fuel droplets and a laser beam. The source vessel includes an inner surface for receiving the fuel debris, an first aperture at one end of the inner surface, and a heater adjacent to the inner surface and configured to generate a heating area on the inner surface in coordination with a rotation speed of the source vessel. The fuel debris is reflowed to the heating area. A method for generating EUV radiation includes collecting fuel debris on an inner surface of a source vessel, rotating the source vessel at a rotation speed, and heating a portion of the source vessel to an elevated temperature to generate a heating area on the inner surface in coordination with the rotation speed. The fuel debris is reflowed to the heating area.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-Chun Yen, Chi Yang, Shang-Chieh Chien, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 10678133
    Abstract: A method for forming a photoresist layer includes the following steps. A first photoresist layer is formed on a first wafer provided on a platen. The platen includes a plurality of temperature zones being at a first set of process temperatures. A first etching process is performed on the first wafer to form a first patterned metal layer. A profile variation of the first patterned metal layer with respect to a reference profile is determined. The first set of process temperatures is adjusted to a second set of process temperatures according to the profile variation. A second photoresist layer is formed on a second wafer provided on the platen with the temperature zones being at the second set of process temperatures respectively.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Hung Liao, Wei-Chang Cheng
  • Patent number: 10680100
    Abstract: The present disclosure relates to a high voltage transistor device having a field structure that includes at least one conduction unit, and a method of formation. In some embodiments, the high voltage transistor device has a gate electrode disposed over a substrate between a source region and a drain region located within the substrate. A dielectric layer laterally extends from over the gate electrode to over a drift region between the gate electrode and the drain region. A field structure is located within the first ILD layer. The field structure includes a conduction unit having a vertically elongated shape and vertically extending from a top surface of the dielectric layer and a top surface of the first ILD layer.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Ruey-Hsin Liu
  • Patent number: 10679889
    Abstract: A method for manufacturing a semiconductor structure includes at least following steps. A device layer is formed on a first semiconductor substrate. The device layer is separated from the first semiconductor substrate. A dielectric layer is formed on a second semiconductor substrate. The device layer is bonded onto the dielectric layer.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Hsiang Tsai, Chung-Chuan Tseng, Chia-Wei Liu, Li-Hsin Chu
  • Patent number: 10680101
    Abstract: A semiconductor device includes: a first semiconductor region disposed over a second semiconductor region, wherein the first and second semiconductor regions have a first doping type and a second doping type, respectively; a first source/drain contact region and a second source/drain contact region having the second doping type and laterally spaced; and a gate electrode disposed laterally between the first and second source/drain contact regions, wherein the gate electrode comprises a first sidewall relatively closer to the first source/drain region and a second sidewall relatively closer to the second source/drain region, and wherein respective cross-sectional areas of the first and second sidewalls of the gate electrode are different from each other.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Jyun Syue, Chin-Yi Huang, Kuo-Lung Tzeng, Zhuo-Cang Yang
  • Patent number: 10679951
    Abstract: A method includes mounting a wafer-level package substrate over a carrier, and pre-cutting the wafer-level package substrate to form trenches extending from a top surface of the wafer-level package substrate into the wafer-level package substrate. A plurality of dies is bonded over the wafer-level package substrate. The plurality of dies is molded in a molding material to form a wafer-level package, with the wafer-level package including the wafer-level package substrate, the plurality of dies, and the molding material. The carrier is detached from the wafer-level package. The wafer-level package is sawed into a plurality of packages, with each of the plurality of packages including a portion of the wafer-level package substrate and one of the plurality of dies.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Tzu-Shiun Sheu, Shin-Puu Jeng, Shih-Peng Tai, An-Jhih Su, Chi-Hsi Wu
  • Patent number: 10678991
    Abstract: A method of forming an integrated device includes: pre-storing a plurality of via pillars in a storage tool; arranging a first via pillar selected from the plurality of via pillars to electrically connect to a circuit cell in a first circuit; analyzing electromigration (EM) information of the first circuit to determine if the first via pillar induces an EM phenomenon; arranging a second via pillar selected from the plurality of via pillars to replace the first via pillar of the circuit cell to generate a second circuit when the first via pillar induces the EM phenomenon; and generating the integrated device according to the second circuit.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Yao Ku, Wen-Hao Chen, Ming-Tao Yu, Shao-Huan Wang, Jyun-Hao Chang
  • Patent number: 10676343
    Abstract: A multi-layer sealing film for high seal yield is provided. In some embodiments, a substrate comprises a vent opening extending through the substrate, from an upper side of the substrate to a lower side of the substrate. The upper side of the substrate has a first pressure, and the lower side of the substrate has a second pressure different than the first pressure. The multi-layer sealing film covers and seals the vent opening to prevent the first pressure from equalizing with the second pressure through the vent opening. Further, the multi-layer sealing film comprises a pair of metal layers and a barrier layer sandwiched between metal layers. Also provided is a microelectromechanical systems (MEMS) package comprising the multilayer sealing film, and a method for manufacturing the multi-layer sealing film.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien Yang, Ming-Lun Shih, Ren-Dou Lee, Jen-Hao Liu
  • Patent number: 10678990
    Abstract: In some embodiments, an initial circuit arrangement is provided. The initial circuit arrangement includes cells that include default-rule lines and non-default-rule lines. Line widths of the default-rule lines are selectively increased for a first cell in the initial circuit arrangement, thereby providing a first modified circuit arrangement. A first maximum capacitance value is calculated for the first cell of the first modified circuit arrangement. A second modified circuit arrangement is provided by selectively increasing line widths of the non-default-rule lines in the first modified circuit arrangement. A second maximum capacitance value is calculated for the first cell of the second modified circuit arrangement. A line width of a first non-default-rule line is selectively reduced based on whether the first maximum capacitance value adheres to a predetermined relationship with the second maximum capacitance value. The second modified circuit arrangement is manufactured on a semiconductor substrate.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Nan Yang, Chung-Hsing Wang, Yi-Kan Cheng, Kumar Lalgudi