Patents Assigned to Seno Medical Instruments, Inc.
  • Publication number: 20130168532
    Abstract: A system and method for adjusting the light output of an optoacoustic imaging system. An optoacoustic imaging system includes a light source having a light output control, a probe for delivering light to a volume, the probe being associated with one or more sensors, a light path operatively connected to the first light source, the light path providing light from the first light source to the probe. To avoid unsafe fluence levels incident upon the volume of interest in a clinical setting, the light output control may be set to an initial, relatively low value. After the light source is pulsed, the light output may be measured at or near the probe at the distal end of the light path. The measured light output can used to determine whether, and how much, to change the setting of the light output control.
    Type: Application
    Filed: December 31, 2011
    Publication date: July 4, 2013
    Applicant: Seno Medical Instruments, Inc.
    Inventors: Gregory Schmid, Bryan Clingman
  • Publication number: 20130116538
    Abstract: An optoacoustic system and method for providing enhanced laser safety includes a laser light source, a control and processing system, a laser override, and an array of optoacoustic transducers. The laser light source is capable of generating a laser light pulse upon receiving a laser light source trigger. The control and processing system is configured to generate a laser light source trigger, to receive and process ultrasound data, and to control operation of the optoacoustic system. The control and processing system determines whether received ultrasound data reflects acoustic coupling between the transducer array and the volume. The laser override is configured to automatically prevent the generation of a laser light pulse if received ultrasound data does not reflect acoustic coupling between the optoacoustic transducer array and the volume.
    Type: Application
    Filed: October 19, 2012
    Publication date: May 9, 2013
    Applicant: SENO MEDICAL INSTRUMENTS, INC.
    Inventor: Seno Medical Instruments, Inc.
  • Publication number: 20130109950
    Abstract: A handheld optoacoustic probe includes an ultrasound transducer array and optical fibers with a first end formed into a fiber bundle providing an input and a second, distal end providing an output. A light bar guide retains the distal end of the optical fibers on the same plane. One or more optical windows may be associated with, and spaced from the light bar guide so as to prevent contact between a coupling agent and the distal ends of the optical fibers, thus mitigating a potential acoustic effect of the coupling agent in response to light emitting from the fibers. A silicon rubber acoustic lens doped with TiO2 may be provided, with a reflective metal surrounding the outer surface of the acoustic lens. A handheld probe shell houses the light bar guide, the ultrasound transducer array, and the acoustic lens.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: Seno Medical Instruments, Inc.
    Inventors: Donald G. Herzog, Thomas G. Miller
  • Patent number: 7740585
    Abstract: Provided herein is an optoacoustic imaging system configured to produce images of one or more objects in a body using at least a maximum angular amplitude probability algorithm to reconstruct the optoacoustic images of the body. In addition the optoacoustic imaging system may be configured to produce 3D maps from the reconstructed optoacoustic images of the body. Also, provided is a method for diagnosing a pathophysiological condition characterized by abnormal optical properties of tissues in a body from maps so produced.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: June 22, 2010
    Assignee: Seno Medical Instruments, Inc.
    Inventors: Alexander Oraevsky, Sergey Ermilov
  • Patent number: 7500953
    Abstract: A method of enhancing detection for a specific object in a body. A nanoparticulate is administered to the body for location in an area to be explored for detection of the object, if present. The nanoparticulate is at least partially metallic, has a formed non-spherical shape having a minimal characteristic dimension in the range from about 1 to about 3000 nanometers, and has a formed composition capable of producing thermal pressure either in the nanoparticulate or in the object greater than the object could produce in the absence of the nanoparticulate. Electromagnetic radiation is directed into the body. The electromagnetic radiation has a specific wavelength or spectrum of wavelengths in the range from 300 nm to 300 mm selected so that the wavelength or wavelength spectrum is longer by a factor of at least 3 than the minimum characteristic dimension of the nanoparticulate.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: March 10, 2009
    Assignee: Seno Medical Instruments, Inc.
    Inventors: Alexander A. Oraevsky, Paul M. Henrichs