Patents Assigned to Sensor Electronics Technology, Inc.
  • Patent number: 10314928
    Abstract: An ultraviolet (UV) footwear illuminator for footwear treatment is disclosed. In one embodiment, the UV footwear illuminator includes an insert adapted for placement in an article of footwear. At least one UV radiation source is located in the insert and is configured to emit UV radiation in the footwear through a transparent window region formed in the insert. A control unit is configured to control at least one predetermined UV radiation characteristics associated with the radiation emitted from each UV radiation source. A power supply is configured to power each UV radiation source and the control unit.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Sensor Electronics Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10319881
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: June 11, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20190162381
    Abstract: An approach for providing illumination with a blue UV light source, which can be used in combination with a visible light source is disclosed. In operation, the visible light source emits visible light at a first intensity. The blue UV light source emits blue UV light at a second intensity. The blue UV light stimulates fluorescence from a surface of an object illuminated by the blue UV light. A sensor can detect the intensity of the fluorescence from the surface illuminated by the blue UV light source. A control module can be operatively coupled to the visible light source, the blue UV light source, and the at least one sensor, and be configured to change the intensity of the visible light and/or the intensity of the blue UV light as a function of the fluorescent intensity detected by the sensor.
    Type: Application
    Filed: November 30, 2018
    Publication date: May 30, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10301195
    Abstract: A solution for disinfecting a fluid, colloid, mixture, and/or the like using ultraviolet radiation is provided. An ultraviolet transparent enclosure can include an inlet and an outlet for a flow of media to be disinfected. The ultraviolet transparent enclosure can include a material that is configured to prevent biofouling within the ultraviolet transparent enclosure. A set of ultraviolet radiation sources are located adjacent to the ultraviolet transparent enclosure and are configured to generate ultraviolet radiation towards the ultraviolet transparent enclosure.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: May 28, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10297460
    Abstract: A semiconductor structure, such as a group III nitride-based semiconductor structure is provided. The semiconductor structure includes a cavity containing semiconductor layer. The cavity containing semiconductor layer can have a thickness greater than two monolayers and a multiple cavities. The cavities can have a characteristic size of at least one nanometer and a characteristic separation of at least five nanometers.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: May 21, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Wenhong Sun, Rakesh Jain, Michael Shur, Remigijus Gaska
  • Patent number: 10286094
    Abstract: A device including a flexible substrate and an ultraviolet radiation system is disclosed. The ultraviolet radiation system can include at least one ultraviolet radiation source configured to emit ultraviolet radiation towards a surface to be disinfected, an ultraviolet transparent component configured to focus the ultraviolet radiation, and a control system configured to control the at least one ultraviolet radiation source. The device can include a hand article, such as a glove.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: May 14, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20190135659
    Abstract: A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 9, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Igor Agafonov, Ignas Gaska, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Patent number: 10279059
    Abstract: A solution in which an ultraviolet radiation source is mounted on a flexible substrate is provided. The flexible substrate is capable of having a deformation curvature of at least 0.1 inverse meters. The flexible substrate may be incorporated within an existing enclosure or included in the enclosure. The flexible substrate can be utilized as part of a solution for disinfecting one or more items located within the enclosure. In this case, while the items are within the enclosure, ultraviolent radiation is generated and directed at the items. Wiring for the ultraviolet radiation source can be embedded within the flexible substrate and the flexible substrate can have at least one of: a wave-guiding structure, an ultraviolet absorbing surface, or an ultraviolet reflective surface. A control system can be utilized to manage generation of the ultraviolet radiation within the enclosure.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 7, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20190125907
    Abstract: Disinfection of a surface, such as a mouthpiece of a water bottle, using ultraviolet radiation is disclosed. A cover assembly can include a cover configured to selectively enclose the surface to be disinfected, such as the mouthpiece. The cover assembly can be configured such that ultraviolet radiation can be emitted into an interior volume at least partially formed by the cover and including the surface. The cover assembly can further include a power source which provides power to one or more ultraviolet light sources that emit the ultraviolet radiation. The cover assembly can be a mouthpiece cover assembly physically separate from a container and top cover or integrated in the top cover. A container and a top cover including one or more features for improved cleanliness are also disclosed.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 2, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Patent number: 10276749
    Abstract: A device including a first semiconductor layer and a contact to the first semiconductor layer is disclosed. An interface between the first semiconductor layer and the contact includes a first roughness profile having a characteristic height and a characteristic width. The characteristic height can correspond to an average vertical distance between crests and adjacent valleys in the first roughness profile. The characteristic width can correspond to an average lateral distance between the crests and adjacent valleys in the first roughness profile.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 30, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Michael Shur, Grigory Simin
  • Patent number: 10272168
    Abstract: Ultraviolet radiation is directed within a storage area at target wavelengths, target intensities, a target temporal distribution, and/or a target spatial distribution. A set of ultraviolet radiation sources generate ultraviolet radiation directed at a set of items located within the storage area. A first ultraviolet radiation source operates at a first peak wavelength and a second ultraviolet radiation source operates at a second peak wavelength that is different from the first peak wavelength.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: April 30, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska
  • Publication number: 20190117811
    Abstract: An illuminator comprising more than one set of ultraviolet radiation sources. A first set of ultraviolet radiation sources operate in a wavelength range of approximately 270 nanometers to approximately 290 nanometers. A second set of ultraviolet radiation sources operate in a wavelength range of approximately 380 nanometers to approximately 420 nanometers. The illuminator can also include a set of sensors for acquiring data regarding at least one object to be irradiated by the first and the second set of ultraviolet radiation sources. A control system configured to control and adjust a set of radiation settings for the first and the second set of ultraviolet radiation sources based on the data acquired by the set of sensors.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 25, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Arthur Peter Barber, III
  • Publication number: 20190123239
    Abstract: A semiconductor heterostructure for an optoelectronic device with improved light emission is disclosed. The heterostructure can include a first semiconductor layer having a first index of refraction n1. A second semiconductor layer can be located over the first semiconductor layer. The second semiconductor layer can include a laminate of semiconductor sublayers having an effective index of refraction n2. A third semiconductor layer having a third index of refraction n3 can be located over the second semiconductor layer. The first index of refraction n1 is greater than the second index of refraction n2, which is greater than the third index of refraction n3.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 25, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 10256334
    Abstract: A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: April 9, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20190100718
    Abstract: Ultraviolet irradiation of fluids for the purposes of disinfection, sterilization and modification of a target organic compound found within the fluids. The target compound in the fluids can have an absorption spectra with an ultraviolet wavelength ranging from 230 nm to 360 nm. The absorption spectra includes a first and second set of wavelengths corresponding to absorption peaks and absorption valleys in the absorption spectra, respectively. A-set of ultraviolet radiation sources irradiate the fluids. The set of ultraviolet radiation sources operate at a set of peak wavelengths ranging from 230 nm to 360 nm with a peak full width at half maximum that is less than 20 nm. The set of peak wavelengths are proximate to at least one wavelength in the second set of wavelengths corresponding to the absorption valleys in the absorption spectra with a variation of a full width half maximum of the absorption valley.
    Type: Application
    Filed: September 26, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Alexander Dobrinsky
  • Publication number: 20190098842
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.,
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Publication number: 20190098969
    Abstract: A wearable fluorescent article of adornment with ultraviolet radiation source of excitation is described. At least one ultraviolet light emitting source can irradiate a fluorescent material with ultraviolet radiation. The fluorescent material can generate fluorescent light in response to excitation of the fluorescent material with ultraviolet radiation emitted from the at least one ultraviolet light emitting source. The article of adornment can transmit the fluorescent light generated from the fluorescent material while absorbing the ultraviolet radiation. A control unit can control irradiation of the fluorescent material with the at least one ultraviolet light emitting source, while a power supply component can power the at least one ultraviolet light emitting source and/or the control unit.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Carlton Gibson, Alexander Dobrinsky
  • Publication number: 20190099613
    Abstract: A wearable ultraviolet light phototherapy device is disclosed. The wearable ultraviolet light phototherapy device can have a substrate or a housing that is to be worn on a body part of a patient. At least one ultraviolet light emitting source located about the substrate or housing can deliver ultraviolet radiation into the body part of the patient. A control module can control operation of the at least one ultraviolet light emitting source. To this extent, the control module can direct the at least one ultraviolet light emitting source to deliver a predetermined amount of ultraviolet radiation at a peak wavelength into the body part of a patient. The control module can determine the predetermined amount of ultraviolet radiation as a function of the patient's susceptibility to ultraviolet radiation.
    Type: Application
    Filed: September 26, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Robert M. Kennedy
  • Publication number: 20190103509
    Abstract: A heterostructure for an optoelectronic device is disclosed. The heterostructure includes an active region including at least one quantum well and at least one barrier and an electron blocking layer located adjacent to the active region, wherein the electron blocking layer includes a region of graded composition. An asymmetric p-type superlattice layer is located adjacent to the electron blocking layer, wherein the p-type superlattice includes at least one superlattice period comprising a set of wells and a set of barriers. A thickness of at least one of: each well in the set of wells or each barrier in the set of barriers varies along a length of the p-type superlattice.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Mohamed Lachab
  • Publication number: 20190100445
    Abstract: Ultraviolet irradiation of an aquatic environment for the purposes of sterilization, disinfection, and/or cleaning fluids and surfaces associated with the aquatic environment. The aquatic environment can be irradiated using an ultraviolet illuminator having at least one ultraviolet radiation source and at least one sensor to detect conditions of the aquatic environment including fluid conditions and/or surface conditions associated with the aquatic environment. A control unit, operatively coupled to the at least one ultraviolet radiation source and the at least one sensor, determines a presence of algae growth about the aquatic environment. The control unit is further configured to direct the at least one ultraviolet radiation source to irradiate the aquatic environment at locations where there is a presence of algae growth for removal and suppression of further growth, monitor the irradiation with the at least one sensor, and adjust irradiation parameters as a function of detected conditions.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 4, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky