Patents Assigned to Sequenom, Inc.
  • Patent number: 11697849
    Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 11, 2023
    Assignee: SEQUENOM, INC.
    Inventors: Cosmin Deciu, Mathias Ehrich, Dirk J. van den Boom, Zeljko Dzakula
  • Publication number: 20230187021
    Abstract: Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of genomic nucleic acid instability and genomic nucleic acid stability.
    Type: Application
    Filed: October 10, 2022
    Publication date: June 15, 2023
    Applicant: Sequenom, Inc.
    Inventors: Youting Sun, Sung Kyun Kim, Mathias Ehrich, Christopher Ellison, Taylor Jensen, Amin Mazloom
  • Publication number: 20230135846
    Abstract: Technology provided herein relates in part to methods, processes, machines and apparatuses for determining sequences of nucleotides for nucleic acid templates in a nucleic acid sample. The technology provide herein also relates in part to methods, processes, machines and apparatuses for counting nucleic acid templates. Nucleic acid templates of a sample are tagged with nonrandom oligonucleotide adapters that include predetermined non-randomly generated sequences. The use of these nonrandom oligonucleotide adapters provides an efficient method to reduce sequencing errors, and increase the sensitivity of detection of low-frequency single nucleotide alterations.
    Type: Application
    Filed: May 23, 2022
    Publication date: May 4, 2023
    Applicant: Sequenom, Inc.
    Inventors: Taylor Jensen, Christopher Ellison
  • Publication number: 20230060700
    Abstract: Provided are compositions and processes that utilize genomic regions that are differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are particularly useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuploidies.
    Type: Application
    Filed: April 22, 2022
    Publication date: March 2, 2023
    Applicant: Sequenom, Inc.
    Inventors: John Allen Tynan, Grant Hogg
  • Patent number: 11560586
    Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: January 24, 2023
    Assignee: SEQUENOM, INC.
    Inventors: Cosmin Deciu, Zeljko Jovan Dzakula, Mathias Ehrich, Sung Kyun Kim
  • Publication number: 20220411871
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Application
    Filed: May 23, 2022
    Publication date: December 29, 2022
    Applicant: Sequenom, Inc.
    Inventors: Taylor Jacob Jensen, Jennifer Geis, Sung Kyun Kim, Cosmin Deciu, Mathias Ehrich
  • Publication number: 20220403468
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 22, 2022
    Applicant: SEQUENOM, INC.
    Inventors: Taylor Jacob JENSEN, Mathias EHRICH
  • Patent number: 11515003
    Abstract: Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of genomic nucleic acid instability and genomic nucleic acid stability. The method comprises providing a set of genomic portions each coupled to a copy number alteration quantification for a test sample, wherein the genomic portions comprises portions of a reference genome to which sequence reads obtained for nucleic acid from a test sample obtained from the subject have been mapped, and the copy number alteration quantification coupled to each genomic portion has been determined from a quantification of sequence reads mapped to the genomic portion; and determining, by a computing device, presence or absence of genomic instability for the subject according to the copy number alteration quantifications coupled to the genomic portions.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 29, 2022
    Assignee: Sequenom, Inc.
    Inventors: Youting Sun, Sung Kyun Kim, Mathias Ehrich, Christopher Ellison, Taylor Jensen, Amin Mazloom
  • Publication number: 20220356523
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Application
    Filed: March 25, 2022
    Publication date: November 10, 2022
    Applicant: Sequenom, Inc.
    Inventors: Charles R. Cantor, Grace DeSantis, Reinhold Mueller, Mathias Ehrich
  • Patent number: 11492659
    Abstract: Provided herein are methods for determining fetal ploidy according to nucleic acid sequence reads. Nucleic acid sequence reads may be obtained from test sample nucleic acid comprising circulating cell-free nucleic acid from the blood of a pregnant female bearing a fetus. Fetal ploidy may be determined according to genomic section levels and a fraction of fetal nucleic acid in a test sample.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: November 8, 2022
    Assignee: Sequenom, Inc.
    Inventors: Cosmin Deciu, Zeljko Dzakula, John Allen Tynan, Grant Hogg
  • Patent number: 11462298
    Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of decision analyses. The decision analyses sometimes include segmentation analyses and/or odds ratio analyses.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: October 4, 2022
    Assignee: Sequenom, Inc.
    Inventors: Chen Zhao, Zeljko Dzakula, Cosmin Deciu, Sung Kyun Kim, Amin R. Mazloom, Gregory Hannum, Mathias Ehrich
  • Patent number: 11437121
    Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 6, 2022
    Assignee: Sequenom, Inc.
    Inventors: Cosmin Deciu, Zeljko Dzakula, Mathias Ehrich, Taylor Jacob Jensen
  • Patent number: 11401551
    Abstract: Systems and methods for identifying a de novo mutation in a genome of a fetus are provided. Methods may include identifying a location of each of a plurality of cell-free nucleic acid molecules using sequence reads. Methods may also include identifying a first sequence in the sequence reads at a first location that is not present in the maternal or paternal sequences. Methods may additionally include determining a first fractional concentration of the first sequence in the biological sample at the first location. Further, methods may include determining a second fractional concentration of a fetal-specific second sequence. The second sequence may be inherited by the fetus from the father at the second location. In addition, methods may include classifying the first sequence as a de novo mutation at the first location in a fetal genome of the fetus if the first and second fractional concentrations are about the same.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: August 2, 2022
    Assignees: The Chinese University of Hong Kong, Sequenom Inc.
    Inventors: Yuk Ming Dennis Lo, Kwan Chee Chan, Wai Kwun Rossa Chiu, Charles Cantor
  • Patent number: 11365447
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations. In particular the invention relates to methods and kits for detecting aneuploidy of a fetal chromosome by determining the amounts of differentially methylated regions in each of chromosomes 13, 18 and 21 in circulating cell-free nucleic acid from a human pregnant female.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: June 21, 2022
    Assignee: Sequenom, Inc.
    Inventors: Taylor Jacob Jensen, Jennifer Geis, Sung Kyun Kim, Cosmin Deciu, Mathias Ehrich
  • Patent number: 11332791
    Abstract: Provided are compositions and processes that utilize genomic regions that are differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are particularly useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuploidies.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 17, 2022
    Assignee: Sequenom, Inc.
    Inventors: John Allen Tynan, Grant Hogg
  • Patent number: 11312997
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: April 26, 2022
    Assignee: Sequenom, Inc.
    Inventors: Charles R. Cantor, Grace DeSantis, Reinhold Mueller, Mathias Ehrich
  • Patent number: 11306354
    Abstract: Technology provided herein relates in part to methods, processes, compositions and apparatuses for analyzing nucleic acid.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: April 19, 2022
    Assignee: Sequenom, Inc.
    Inventors: Sung K. Kim, Cosmin Deciu
  • Publication number: 20220093207
    Abstract: Technology provided herein relates in part to non-invasive classification of one or more genetic copy number alterations (CNAs) for a test sample. Certain methods include sampling a quantification of sequence reads from parts of a genome, generating a confidence determination, and using the confidence determination to enhance classification. Technology provided herein is useful for classifying a genetic CNA for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: Sequenom, Inc.
    Inventors: Amin Mazloom, Cosmin Deciu, Chen Zhao, Tong Liu, Yijin Wu
  • Patent number: 11200963
    Abstract: Technology provided herein relates in part to non-invasive classification of one or more genetic copy number alterations (CNAs) for a test sample. Certain methods include sampling a quantification of sequence reads from parts of a genome, generating a confidence determination, and using the confidence determination to enhance classification. Technology provided herein is useful for classifying a genetic CNA for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: December 14, 2021
    Assignee: Sequenom, Inc.
    Inventors: Amin Mazloom, Cosmin Deciu, Chen Zhao, Tong Liu, Yijin Wu
  • Publication number: 20210371901
    Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.
    Type: Application
    Filed: July 26, 2021
    Publication date: December 2, 2021
    Applicant: Sequenom, Inc.
    Inventor: Michael Rehli